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ABSTRACT

A new methodology is described for the design of nonlinear

dynamic controllers for nonlinear multlvarlable systems providing

guarantees of closed-loop stabillty, perfornmnce, and robustness. The

methodology is an extension of the Llnear-Quadratlc-Gaussian with

Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus

hinging upon the idea of constructlngzoa approximate inverse operator

for the plant. A major feature of the methodology is a unification of

both the state-space and Input-output formulations.

In addition, new results on stability theory, nonlinear state

estimation, and optimal nonlinear regulator theory are presented,

including the guaranteed global properties of the extended Kalman

filter and optimal nonlinear regulators.
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CHAFFER1. INTRODUCTION

1.1 Overview

1.1.1 Notivation

The feedback control systems that we build and operate today are

exceedingly complex and nonlinear in their operation. Even our best

efforts at modeling these systems can produce only low order

nonlinear models that describe the behavior of the system over some

limited operating regime. Frequently, we often generate even

simpler, linear models o£ these systems, valid in some even smaller

operating regime. We then apply methods that have been developed for

controlling linear _ystems. Engineers succeed at applying these

methods in the real world because frequently the region of desired

operation is within a region of approximate linearity. Even if this

is not the case, we can sometimes alter specifications to shrink the

region o£ operation: virtually any system will behave almost linearly

if not pushed too hard. We are then justified in modeling a real

world system by a linear one and applying linear theories and design

methodologies to it.

However, as we build faster and more complex dynamic feedback

systems (e.g. aircraft, robots, reactors, etc.), we find that this

method does not suffice. As we begin to demand higher performance

from our systems, we begin to require something more than linear

-10-



models and theories. We begin to require a nonlinear control system

design theory that we can apply to the nonlinear models we must

derive.

Current approaches to this problem are ad hoc In nature: the

problem is broken down into several linear ones, with linear theory

used on each piece. Then all the linear controllers are combined

into one global nonlinear controller for the original system.

Unfortunately, this method, called gatn-schedultng, comes with no

guarantees. There is currently no sound theoretical basis for

gain-scheduling, and while there have been some successes, problems

have been reported in high performance designs. Generally, it has

been successful when the system Is not pushed too hard, i.e. changes

regimes slowly.

This thesis describes an approach without these drawbacks. It

describes a methodology for the control of nonlinear systems in which

a nonlinear dynamic compensator Is designed directly, with no

Intermediate linearization and combination steps. It has turned out

that, in addition to being a more aesthetically appealing approach,

this technique guarantees several desirable properties for the

nonlinear closed-loop system on a sound mathematical basis.

1.1.2 Contributions of the _nesis

The approach presented here Is an extension of the Linear-

Quadratic-Caussian with Loop Transfer Recovery (LQG/LTR) methodology

-I1-



for linear systems [1,2,3], which has been recently developed. We

call the extension the Nonlinear-Model-Based-Compensator with

Loop-Operator-Recovery (NMBC/LOR) methodology.

Fortunately, many of the results in the linear case can be

extended to the nonlinear case with little or no conceptual change.

The methodology outlined here is hoped to be the start of a complete

prescription for designll_ control systems for nonlinear systems,

providing

(a)

(b)

(c)

guaranteed closed-loop stability,

adequate robustness margins, and

design parameters which can be to adjusted so that

performance meets desirable specifications.

In addition, one of the philosophical contributions is the

framework handling both state-space based optimization methods and

Input-output (I/0) analysis methods. Perhaps this will lead the way

to more techniques that utilize the best each method has to offer,

rather than limiting techniques to only on method.

In chapter 2, basic analysis tools are developed for feedback

systems. In section 2.3, basic stability results are presented,

including internal stability definitions and results and the

incremental stability theorem (showing that incremental stability is

equivalent to uniform stability of sets of llnearized systems). In

section 2.5, closed-loop stability robustness tested are presented,

allowing one to determine the robustness of proposed loop operators.

-12-



In chapter 3, a very significant result is presented, that of

the nondivergence of the extended Kalman filter (EKF) for every

detectable plant. This is an important result by itself, as it

justifies the use of the EKF for problems where estimation is the end

goal itself, without feedback control. In section 3.4.3. guaranteed

properties of solutions of certain optimal control problems are

presented, generalizing previously known results.

Finally, in chapter 4, the NMBC/LOR methodology is presented in

its entirety, with full details.

The development of a unified multivariable nonlinear feedback

control design methodology will allow engineers to control systems

with much higher performance than current knowledge allows° Global

stability guarantees are reassuring, considering the problems

encountered by some gain-scheduled designs. Also, certain systems

may be so highly nonlinear in all operating regions that

linearization based methods-offer little hope. Thus it is hoped that

the results presented here will be a suitable starting point for a

complete methodolog_ useful for practical implementation.

I.I.3 Organlzation of the Thesis

The thesis is organized into 6 chapters. Chapter 2 covers the

analysls of feedback systems. Chapter 3 covers the synthesis of

stabilizing control systems. This is done by a separation result

(section 3.2) allowing the combination of good estimators (section

3.3) and good state-feedback controllers (section 3.d). Chapter d

details the entire NMBC/LOR methodology, including all three

-13-



variations. C_tapter 5 presents the results of numerical simulations

carried out to test and evaluate the NMBCILOR techniques on a simple

nonlinear pendulum problem. Chapter 6contalns the conclusions and

suggestions for future research. The appendices contain two fairly

long proofs, details on a promising new observer, the properties of

optimal filters, some factorlzation ideas, and information on state

feedback servos.

1.2 Previous Work a_idRelated Literature

In the literature there appear no complete nonlinear control

methodologies, in the sense that they are applicable in general to

truly nonlinear systems without having all states available for

feedback. This section will provide an overview of the background

results and control schemes that are available. In addition, an

overview of the fairly complete linear theory (LQ_/LTR) will be given

as a basis for the extensions presented throughout this thesis.

1.2.1 Background theory

The research reported in this thesis draws on several basic

feedback theories to provide the machinery and framework for our

results.

For stability, Input-output (I/O) concepts will be used

extensively. The orginal work by Zames [4] and Sandberg [5] dealing

with a fairly general nonlinear feedback system provided the

groundwork for other I/O stability results (including Safonov [6],

Willems [7], Desoer and Vidyasagar [8]). The most general results so

-14-



far have been Safonov's [6], in which stability and robustness

conditions are formulated in terms of sectors and cones in function

spaces. The work reported here is closest in spirit to E6].

In addition to the I/O concept of stability, we also will be

using Lyapunov concepts (Hahn [9], Krasovskll [10], Vidyasagar [11],

and others) to help us tie IlO concepts to the state space. The

relationship between Lyapunov and I/O stability has been discussed in

Wlllems [12], Hill and Moylan [13], Vidyasagar and Vannelli [14], and

Bodson and Sastry [15].

In the area of performance analysis, the work of Desoer and Wang

[16] generalizes some of Bode's [17] origlnal feedback equations to

the nonlinear case. The concepts Involve relatlons between loop gain

and command following errors, with sultable definitions.

1.2.2 Nonlineax Control Schemes

An ad hoc technique whlchhas been used with some success in

aircraft and aircraft engine control is gatn-scheduttng, in which the

nonlinear plant is llnearized at several operating points and linear

controllers designed £or each operating point. Then the parameters

of the controllers or compensators are scheduled on the basis of some

measured variables, aS the system changes operating regions.

However, there are no a priori guarantees whatsoever as to system

stability, robustness, or performance, and some problems have been

noted when high performance gain-scheduled designs have been

-15-



attempted in recent studies (Kapasouris [18], Pfeil [19], and Lively

[20]). A solid theoretical treatment of galn-scheduled designs is at

present lacking.

Safonov [6] presents conditions under which linear gains in a

nonlinear controller will stabilize a nonlinear system, but they are

basically bounds on the amount of nonlinearity allowed. In addition,

[6] does not address any performance issues, as well as the issue of

what to do if the linear gains do not work.

The work on external t_neartzatton of Meyer and colleagues

[21.22,23, et all, by Isldori [24], and Krener, Isidori. and

Respondek [25] shows much promise. They seek transformations of

state variables and input coordinates that convert a given nonlinear

system to a linear one, thus allowing the application of conventional

methods. The method is still in its infancy since it requires full

state feedback and issues of robustness, performance (command

following and disturbance r_Jectlon), and dynamic compensation when

all state-varlables are not available for measurement have not yet

been addressed. In addition, not all Systems can be llnearized in

this fashion [22]. A procedure related to external linearization,

called nonlinear decoup[tng, is described in [76,77, et all, in whic_h

the goal is to reduce (or remove) the coupling of certain pairs of

inputs and outputs. There is also a dual procedure to external

linearization for designing state estimators {Krener and Respondek

[26]) which turns out to be a more difficult proposition. However,

if these techniques are able to generate controllers by combining

-16-



state feedback and observers, the results reported in this thesis

will be applicable and useful. We discuss these results in sections

3.3.6 and 3.4.5.

Another proposed nonlinear stabilization scheme is the

O-parazaetertzatton of Desoer and Lin [27] and Anantharam and Desoer

[28], in which the set of controllers stabilizing a given nonlinear

plant is suitably parameterized. One drawback to this technique is

that the method works only on open-loop stable plants, or on ones

that have already been stabilized by some sort of feedback. In

addition they do not address the issues of robustness, perfomance, or

implementation. In section 4.3.4, we use the ideas of

Q-parameterization in our formal loop shaping procedure.

Yet another proposed control scheme is the describing fURCt_on

method, in which the plant is converted to a set of linear models,

one for each "operating point". Here "operating point" refers to a

specific amplitude and frequency of input signal, rather than a point

in the state-space. A linear controller is then designed for each

"operating point" and the resulting set of controllers is converted

to a nonlinear controller through an inverse describing function

procedure. This method has much in common with the gain-scheduling

procedure and currently has the same drawbacks, namely, no guarantees

as to stability, robustness, or performance. Papers on this method

using sinusoidal-input describing functions (SIDF) are Taylor [29]

and Taylor and Strobel [30]. A similar linearization technique that

generates just one linear model from the nonlinear system using

random-input describing functions (RIDF), called NonLinear Quadratic

-17-



C-ausstan (NQG) control, is described in Beaman [31]. Describing

function ideas may prove useful in the posing and checking of

specifications, as we describe in section 2.6.

1.2.3 Linear Multlvariable Control Theory

At the start of the research presented in this thesis, LQG/LTR

was chosen as the linear multivarlable control system design

methodology most likely to be extendable to the nonlinear case. It

has turned out that virtually all results from the linear theory can

be carried over, with only slight changes. This is perhaps a sign of

the ease with which future results may be generated.

The LQG/LTR methodology is explained in Doyle and Stein [1], and

Stein and Athans [2]. In the LQG/LTR methodology, all robustness and

performance specifications are translated into the frequency domain.

using singular values [3], which are the multivariable generalization

of the classical Bode plots_ Once these specifications have been

posed, one then designs a "target loop" transfer function which meets

these specifications. In LQG/LTR, the target loop is usually

designed using optimization theory (the Kalman filter) in order that

it have several built-ln good properties.

Since the target loop is not a realizable controller by itself,

the next step is to modify a special LQG compensator such that the

loop transfer function asymptotically approaches the target loop

shape. The final compensator is chosen as one that gives an actual

-18-



loop sufficently close to the target loop over the frequency range of

interest, resulting In a final closed-loop system that meets the

posed specifications.

In addition to thls organized procedure, there are a number of

techniques that can be used to help generate a desirable target loop

transfer function, allowing a reasonable amount of control over the

properties of the final closed-loop system.

1.3 Introduction to the I_IBC/LOR Methodology

Thls section wlll present a simplified discussion of the

methodology proposed in thls thesis, termed the Nonlinear Model-

Based-Compensator with Loop-Operator-Recovery methodology. There are

three variants of the NMBC/LOR technique discussed in chapter d, but

we will discuss them collectively In general terms in this section.

One of the major features of NMBC/LOR Is an attempted

unification of state-space based optimization methods wlth

Input-output analysis. We use state-space techniques for synthesis

because gains can be calculated most easily In that framework.

However, urunode_ed dyrtamtcs cannot be captured with state-space

models, and It is here that I/0 methods are most useful; we use I/0

methods for analysis.

The steps to deslgn a control system for a particular plant are

as follows:

-19-



Step I (Modeling): Develop a model for the plant as a

finlte-dimensional nonlinear differential equation. As part of the

modeling process develop bounds for the error between the actual

plant and the model. Such errors are called unmodeted dynamics. The

reasons for the discrepancy between the actual plant and the model

are (1) unknown dynamics, or (2) known but neglected dynamics.

Step 2 (Specifications): Convert all specifications into

specifications on the _oop operator, which is either the plant

cascaded with the compensator, or the compensator cascaded with the

plant, depending on the variant of LOR being used. The results in

chapter 2 will show us that the loop operator is the important

quantity in determining performance and robustness.

Step 3 (Target Loop): Determine a target loop operator that meets

all of the specifications of step 2. This target loop operator will

generally be in a special form, namely a state-feedback loop or a

filter loop, as will be discussed in chapter 3. It will be possible

to choose this target loop operator in such a way that good

robustness _ud performance properties are guaranteed.

Step 4 (NMBC Construction): Build a Nonlinear Model Based

Compensator that guarantees that the closed-loop system will be

stable. Chapter 3 discusses the procedure for this.

-20-



Step 5 (Loop Operator Recovery): Adjust key parameters in the NMBC

design process according to the results of chapter 4, and. with

certain technical restrictions, the actual loop operator will

approach that of the target loop operator. Use one of these limiting

compensators as the final design, so that the loop operator is

virtually the same the target loop operator. The final design then

meets all of the original specifications.

Remark 1 In the LOR procedure of this last step, the actual loop is

forced to look like the target loop. This is done by the compensator

creattng an approxtmate tnverse for the plant and substituting the

target loop in its place. Since we desire the final closed-loop

system to be closed-loop stable, we must do this in an intelligent

manner. For instance, this means making sure that the equivalent of

right-half-plane pole-zero cancellations are avoided. Additionally,

we see that if the plant were linear, we would have to rule out

right-half plane zeros in the plant, as the compensator would not be

able to cancel them as other dynamics.

Remark 2 The LOR procedure that we will present in this thesis is

practicable: we will present a well-defined algorithm for ensuring

the above LOR process. In addition, we will reject certain

algorithms as being computationally too difficult (e.g. the optimal

filter in section 3.3.2) and thus arrive at concrete algorithms that

are within the reach of current technology.
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This completes the outline of the NMBCILOR procedure. The rest

of the thesis is devoted to developing all of these ideas in detail,

with mathematically precise results.
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1.4 Notation

I

0

_n

IR÷

vg

Ixl

Omin[A]

P

P
T

Ilxll
P

Ilxll
p,T

,(x.y)ll

¢

¢(t.r)

A>B (A_B)

AT _

P

K

T

"is defined as"

The identity matrix or operator

The zero matrix or operator

The real numbers

space o£ ordered n-tuples o£ real numbers

The non-negative real numbers

The gradient matrix o£ the function g:Rn-_R m

The Euclidean norm of the vector x, e.g (xTx) 1/2

The maximum singular value of the matrix A

The minimum singular value o£ the matrix A

signal space with elements of finite p-norm

extended signal space = {x:_._:_nl llxll®,v

truncation operator

p-norm o£ signal x(*) as a member of

truncated p-norm o£ Signal x(-), = IIPTXll P

see section 2.2

plant dynamics operator = IS -1 - F] -1

< ooV-rEIR+}

state transition matrix £or a linear time-varying system

the matrix A-B is positive (semi)-de£inite

the transpose o£ the matrix A or vector x

the plant operator

the compensator operator

the loop operator
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CHAFFER 2. ANALYSIS: STABILITY. PERFORNANCE & ROBUSTNESS

2.1 Introduction

In order to design good feedback systems we must first

understand what properties a "good" feedback system should have.

This chapter presents this information on the basic definitions and

techniques that we will be using for the analysis o£ multivariable

nonlinear feedback loops. We start In section 2.2 with the

definition of our plant model and basic concepts. Section 2.3 then

concentrates on the issue of stability, including closed-loop

equations, incremental stability, and the relationship between

input-output (I/O) stability and Lyapunov (or zero-input) stability.

The analysis development is continued in section 2.4, where the

command following and disturbance rejection performance of a feedback

system is analyzed, and in section 2.5, where tests for stability

robustness with respect to unstructured unmodeled dynamics are

presented. Finally, the chapter concludes in section 2.6 with a

discussion of the issues involved in actually carrying out some of

these tests.

We will try to parallel the linear system theory [1,2,3]

development as much as possible to give the reader more of a feeling

for the analogy between results for linear and nonlinear systems. In

addition, we will endeavor to use the same notation wherever

possible.
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2.2 Models and BasicDe£initions

In this section we define the model of the plant to be

controlled and our definitions for norms, st&bility, etc. We will

also present the operator notation for the description of dynamical

systems and associated notation.

We first define the so called design ptant model that we shall

use. The design plant model will be the model used to apply the

NMBC/LOR methodology in chapter 4 and includes all scaling,

normalizations, and augmented dynamics, such as integrators, as

discussed in section 4.4. Our design plant model will be described

by

_(t) = f(X(t)) + B u(t);

y(t) = C x(t)

x(O) = o (2.1a)

(2.1b)

where x(t)e_ n is the state, u(t)e_ m is the tnput, and y(t)E_ m is the

output. B is an nxm matrix and C is an mxn matrix. We assume that

the nonlinearity f:_n-_Rn is at least twice continuously

differentiable, with f(O)=O, and we will usually assume that there

exists Mf such that

[vf(x)[ 5 Nf for all xe_ n (2.2a)

5 Mf for all xe_ n. 05 i.j.k 5 n. (2.2b)
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In (2.1) the initial condition for the state is zero. In general

this is how we will deal with differential equations from an

Input-output viewpoint. If the system is controllable, then clearly

we can access all possible behavior of (2.1) by first traveling to a

desired state, then starting our observation. When we use Lyapunov

techniques, we will use a nonzero initial condition for the plant

model; section 2.3 contains results relating the two formulations.

The model (2.1) is more general than it might appear, for

suppose we had a system

= g(z.v)

y = h(z)

with v the input to the system.

(2.3a)

(2.3b)

Through a change of state variables,

it will usually be possible to make the output map h linear. The

simplest way to do this is to make the first part of the transformed

state vector, x, be y and the rest be whatever states are needed to

make up a complete state vector. Then the new system (with the same

input-output characteristics) will have a linear output map. Now, if

we add integrators at the input to (2.3), i.e. define a new control

input u so that # = u, we will have transformed the system (2.3) into

the form (2.1). Since augmenting a system with integrators is almost

always done to improve low frequency performance and to ensure zero

steady-state errors to step commands and/or disturbances, the model

(2.1) can actually be used to handle a very wide class of original

models (2.3). Some of the results presented in this thesis do not

require that the input and output maps be linear, but their linearity

will be assumed here to simplify equations as well as allow all the
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results to apply to a specific model (2.1). It will usually be clear

from the proof of a result whether linearity is required for that

specific theorem.

In addition to the description (2.1) for the model, we must

include a description of model uncertainty. We will represent model

uncertainty by unstructured uruaodeted dyrmmtcs, for which we will

assume that we have an IlO bound of some type. Section 2.5 has

details on this topic.

We now consider the I/O viewpoint for systems, in which a system

is thought of as rule for mapping inputs into outputs. Here inputs

and outputs are entire signals, i.e. trajectories, not just elements

of _n. We call a set of signals a stgnat space, and a rule for

mapping one signal space into another is an operator. Since we want

to be able to make quantitative statements, we need a way of

assigning sizes to these signals (elements of a signal space). One

D

way to do this is by the use of norms.

Definition For l_p<_, we define the p-norm of a signal x:_+-_R n

llXllp= Ix(t)lp dt (2.4)

For p_-o0we use

,x, = sup Ixct)l. (2.s)
t
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These definitions of course are not finite for all functions x:_÷-_R n.

We will restrict the signals on which we apply these norms as

follows.

Definition _n is the set of all signals x:R÷-_ n for which IIx(t)ll
P p

is finite, i.e.

_n =lx:iR÷--_np IlXllp < + ® } (2.6)

In functional analysis, values of p are usually considered for the

full range [1,w]. In this thesis we will be concerned primarily with

the cases for p=2 and p=w. Since we restricted the set _, it is not

quite large enough to deal with all of our system theory questions

because it does not include any signals that "blow up". or grow

without bound. Without these types of signals, we cannot discuss

unstable systems, and thus stability itself remains inaccessible. To

be able to handle these growing signals, we must extend the set _ by

the following mechanism. For more details see [4,6,7,8].

Definition The truncation operator PT is defined by its operation

on an arbitrary signal x:_+-_R n as

x(t) if t T(PT x)(t) := 0 if t > T" (2.7)

Definition The extended space _n
p,e

truncations lie in _n i.e.
P

is the set o£ signals whose

_n := { x:_÷-_R n [ P x e _n V T > 0 }.
p,e T p

(2.s)
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We will frequently drop the superscript n, as the dimension of the

underlying vector space is usually quite apparent. In addition, we

will want exclude some signals with very bizarre nonphysical

behavior. For example, consider

-1/4

t t < IX(t)--

t-2 t _ 1
(2.9)

which goes to infinity at t--O and in addition (believe it or not)

belongs to _2" We eliminate this type of annoyance by only

considering the set _ e for the rest of this thesis. For
|

simplicity, we will define the set _ := _m e" As a note to the
s

mathematically sophisticated reader, we will not be concerning

ourselves with the behavior of signals on sets of zero measure, as

this does not affect smooth physical systems.

Remark The above mathematics is just one possible way to utilize

the concepts of extended spaces and so on. In fact, extensions to

discrete time systems are quite easy [4,6]. We restrict ourselves

here in order to give a more concrete flavor, reduce technical

restrictions, and to tie results to the state-space domain.

The operator description of a nonlinear system is simply a

mapping P:_-_. For example, we write

y = Pu; u,yE_

to mean that the input u produces the output y.

y are not points in _n but are entire trajectories in _n,.i.e.

(2.10)

Remember that u and
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elements o£ _. The value o£ the response o£ the system P to the

input u at time t Is glven by

y(t)=(Pu)(t). (2.11)

We will assume that PO=O for all operators we will be considering.

This does not cause any loss In generality, as the 0 input response

can bedealt with separately. We define the addition and composition

of operators in the expected way:

(A+B)u

ABu

:= Au + Bu (2.12)

:= A(Bu) (2.13)

We are now able to extend the notion o£ size to signals in M and

to operators:

De£initlon The truncated L -norms of xCM are
P

IlXllp, T := ilPTXII p = Ix(t) Ip dt ; p<oo (2.14a)

,x,® := ,rx,® = sup IxCt)l (2.14b)
•v 05 tSv "

Definition
The Lp-nOrm, or gain, of an operator (system) is

IIPull

IIPII := sup p,v (2.15)
P Ilull

p,T

where the supremum is taken over all u6_ and all T>O. If the type

(i.e. p) is not specified, then results hold for all p-norms,
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consistently throughout a discussion. In words, the gain is

thelargest possible amplification in signal size that can be achieved

over all possible inputs. Similarly, we have

Definition The L -incremental gain o£ an operator is
P

II.Pu t -Pu2 lip
IIPIIp,jt := sup ,T (2.16)

Ilu+-u2 lip. v

where the supremum is taken over all ul.umf-_ and all v>O.

Definition An operator (system) P is L -stabLe if it has finite
P

gain. i.e. IIPII < +,z.
P

Definition An operator P is L -tncrementatLy stable if it has
P

finite incremental gain, i°e. lIPllp,A < +®.

Note that a system P is stable If and only if there exists a

constant k such that

P

IlPull v _ k Ilull T ; VuC_.TCIR+ (2.17)

and that the smallest such k is the gain IIPII of the system.

Remark We define stability here because there is no standard

definition. Other possibilities include using some increasing

function instead of a linear gain k in (2.17), and not requiring the

output to have zero norm when the input is zero. Note that in the

time-lnvariant linear case the types of stability above are all

equivalent to the standard one.
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As we will occasionally have need to discuss the size o£ the

vector z=(x.y), with zE_ n+m. xE_ n, yCBm. or the signal z=(x,y) with

z_ n+m. x_ n, yE_ m. we clarify the issue by defining:

i(x,y) l := [ ix12 + ]y12 31/2 (2.18)

:= E Ilxll_ 2 + IIylI_ 2 31/2 (2 19a)II(x;y)II2,T Z.T Z0T "

II(x.y)ll_,.r := IlXll + Ilyll (2 19b)_.T ,T" "

Technically, this last definition is not consistent with the

definition o£ a signal given previously, in the sense that if

z=(x.y), we have

Ilzl12. T

but only

Ilzll_v

= II(x,Y) 112,T (2.20)

= sup Iz(t) I ,(x.y),®
t_T ,T

with equality not guaranteed in general. To fix this we would have

to redefine the norm o£ a vector in _n just for the L_ case.

However, this is not worth it because the definition given above is

.... I_I_,,t for our purposes, since

(2.21)

Ilzll_ v 5 II(x.y)lloo V < 2 Ilzlloo,T (2.22)

and we are generally Just concerned with the existence o£ bounds, not

their exact value.

We make one more shorthand notational definition:
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Definition The closed-ball Bh is defined as the set

Bh := { xeIR n IX I _ h }. (2.23)

To simplify equations, we will now define a special nonlinear

operator _ by the mapping from w to x given by

= fCxCt)) +w: x(O) =o (2.24)

and shown in the block diagram of figure 2-1.

nondyv_mical operator defined by

If we let F be the

(Fx)(t) := f(x(t)) (2.25)

and S be the integral operator, we can write

:= [S -1 _ F] -1 (2.26)

We can now see the usefulness of _; our plant (2.1) can now be

written in compact form

y = Pu; P = C_B

This operator representation of our plant will be very useful

throughout the rest of the thesis.

neither B nor C need be linear.

(2.27)

Note that for (2.27) to hold,
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All of the preliminary mathematics has now been covered and we

are ready to go on with the analysis o£ nonlinear systems. In

particular the next section will discuss stability in more detail.

2.3 Stability and Feedback

In this section we investigate the issue of stability more

closely. We start in section 2.3.1 with a derivation of the closed

loop equations for a feedback system, using operator notation. In

section 2.3.2 we then examine the issue of internal stability, a very

important issue for the implementation of a control system. In

section 2.3.3 the relatlon between certain types o£ Lyapunov

stability and I/O stability is detailed. Finally, in section 2.3.4

incremental stability is examined in detail. Incremental stability

will turn out to be an important ingredient in the synthesis of state

estimators.

2.3.1 The Closed LoopEquations

We now examine the use of operators for analyzing closed loop

feedback systems. Consider the closed loop system of figure 2-2,

where we have a plant P and compensator K with a command input r,

input disturbance w, and a output disturbanc_ d. This arrangement is

certainly not the most general possible; we could for instance have

the compensator inputs include the measured signal y and the

reference signal r directly, instead o£ just their difference. We

choose this framework because it happens to fit the results that come

later, as well as the fact that it is a good starting point for
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Figure 2-2: Closed-Loop System
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discussion. In addition, the results of [321 indicate that such a

structure is reasonable in the sense that if the system shown in

figure 2-2 can be stabilized, then a "stable £actorizatlon" o£ the

plant exists. We show in the appendix how the existence of a

stabilizing state feedback £unction (see sections 3.2 and 3.4) is

related to the idea of factorization.

Continuing to analyze the configuration of figure 2-2 we make

the following definition:

Definition The operator PK is called the toop operator broken at

the ptant output. (-K)(-P) is the toop operator broken at the ptant

tnput. The word "broken" is optional.

The terminology should be clear by analogy with the linear

systems case. We will frequently use the terms loop opera,or or

toopl when it is clear from the context which loop we mean. Letting

T=PK be the 1Qop broken at the plant output, the loop equations for

figure 2-2 when w=O are

e = r - d - Te (2.28a)

y = d + Te (2.28b)

Assuming I+T Invertible, we can write

e = [I+T]-l(r-d)

y ffid + T[I+T]-l(r-d).
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The question of invertibility of I+T is relatively easy to answer

here. We basically require T to have no "instantaneous gain"; our

plant model (2.1) guarantees this. [7] has a very detailed

exposition of this concept.

We can thus see that the stability of the closed loop system

when w=O depends only on the stability of [I+T] -1, since

T[I+T] -I = I - [I+T] -I. (2.31)

The situation when w is nonzero is somewhat more difficult. For

instance, we have assumed nothing in the above discussion that would

rule out the analog of pole/zero cancellations in the

right-half-plane. Thus we really have not guaranteed any sort of

practical closed-loop stability by making [I+T] -1 stable. The type

of thing we need is an extension of the closed-loop matrix used [33]

in the linear situation in which both [I+PK] -1 and [I+KP] -1 are

required to be stable. We can do that by the following definition,

modified for command following from [6].

Definition The system in figure 2-2 will be said to be c_osed-_oop

stabte if the mapping (w,d,r)_(y,u) is stable. Because d and r are

added together in this configuration, this is easily shown to be

equivalent to the stability of either of the mappings (with d=O)

(w,r) _ (e,v) (2.32)

(w,r) _ (y,u). (2.33)

In sections 2.d and 2.5 we will examine the closed loop system

performance and robustness in terms of the loop operators.
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2.3.2 Internal Smbility

Suppose that we have a system P that is stable but we are

concerned about internal stabtlttN, that is, whether or not the

insides, or states, of the system are stable. More precisely:

Definition A system P described by (2.1) is tnternattN stabte if

the mapping u_x is stable, i.e. there exists a constant k such that

Ilxll T _ k Ilull T V uE_. TEIR+. (2.34)

For linear systems, one can have II0 stability without internal

stability only if the system has pole-zero cancellations in the right

half plane and thus is unobservable and uncontrollable. This

situation can be avoided, as any realistic model that we want to

control should be both observable and controllable, or at least

stabillzable and detectable (the minimum required for closed-loop

stability). In analogy with the linear case, we therefore define one

possible way to rule out such behavior.

Just for the remainder of this section, we wlll associate a

particular realization with a system P. That is. think of P as a

label for the set of equations (2.1). This slight abuse of notation

will save us the trouble of saying "a particular realization of P.

given by equation (2.1)" instead of just'P".

Definition We shall say PE_@ (for Set o£ Detectable plants) if

there exist constants kl and k 2 such that
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Ilxll T < k, llyll T + k211ull T V uF-_,TEIR+. (2.35)

The reason that this is a useful definition is that the _ property

is retained under feedback and guarantees that we will have internal

stability if we have stability. We will show in section 3.2 that if

estimators can be built for P, then PC3_. The set SD is related to

the concept of observability of other researchers [12,78]. The

following are some easy results:

Theorem 2.1

(a) If Pf-_ then P[I+p]-lf.._, where P[I+P] -1 is realized in the

expected way, i.e. u=ul-y, where ul is the new input.

(b) If Pf-_ and P is stable then P is internally stable.

(c) If P is internally stable then Peb°_.

Proof

(a)

so that

Let PE_t'e_.

Ilxll
1"

The closed loop configuration gives y = P(ul-y)

< ktlly!! T + k2!!,ai-y!i T

(kt+k2)llyll T + k211uillT; VTEB+ (2.36)

and therefore the closed loop system P[I+p]-IE3_.
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(b) Let P be stable and P_. Then

Ilxll T _ klllyll T + kullull T ; VTe_÷

(klllPII + kz)llullT; VTE_÷

and therefore P is internally stable.

(c) Simply pick k,=0. II

(2.37)

From this list of properties, it appears that the set 5_ is

quite useful. Membership in the set guarantees that internal

stability is gotten for free with stability. Property (a) guarantees

that if we design a compensator to stabilize a system so that the

open loop dynamics are in 5_, the closed loop will also be in 5_ and

thus ensure internal stability.

2.3.3 Lyapunov and I/0 Stability

In this section we discuss the relationship between Lyapunov and

II0 stability. The basic references for this section are

[12,13,14,15]. We will present the results in their most general

form so they will be most applicable throughout the rest of the

thesis. In general, we will be concerned about the relationship

between the I/0 bebavior of the system

= f(x,u.t); x(O)=O (2.38)

and the zero input behavior of

= f(x,O,t); x(O)=xo. (2.39)
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We assume that f is locally Lipshttz. i.e. there exist closed balls

Bh.BeORn, and constants Mf.M u such that for all xt ,x2CB h . ut ,u2EB_

lf(x,.ul.t)-f(x2.u_.t)l_ Hf Ix,-x2l+ Mu lu,-u=l:vt>_o. (2.40)

This guarantees the local existence and uniqueness of solutions to

(2.38) and (2.39). The following is a theorem from [15].

Theorem 2.2 Let f be locally Lipshitz as above (2.40) and assume

that x=O is a stable equilibrium point of (2.39}, i.e. f(O,O.t}=O for

all t>O. and there exists a ball BsCB h such that, for all xoCB 5,

to,O, and t_to. x(t)EB h along solutions of (2.39) starting at xo.

Then the following statements are equivalent:

(a} x=O is an exponent_at_g stable equilibrium point of the

system (2.39}, i.e. there exist a. N. such that for all xoCBhC_n.

to,O.

lx(t)l 5 M Ixole-a(t-t°) ; Vt_to. (2.41)

(b) there exists a function v(x.t), and constants at,a2,a3,a 4

such that for all xEB 5, t20.

21xl2at < v(x.t) 5 a221xl 2

dv{x.t) < _aalxl2
dt

Ox < a4Ixl

(2.42)

(2.43)

(2.44)
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Furthermore, (a) implies the requirement o£ stability o£ the origin

and thus implies (b) without that a priori requirement.

Remark This theorem is known as one of the converse thereoms of

Lyapunov function theory C9,10]. The function v is a Lyapunov

function for the system (2.39); from Lyapunov theory, if such a

function exists the system is Lyapunov stable, i.e. the state tends

to zero. The theorem states that if v obeys some asymptotic

properties (2.`12-2.44), the stability is exponential. Note that not

every Lyapunov function for (2.39) will obey (2.42-2.44), even if the

system is exponentially stable; however, there will exist at least

one with such properties.

We are now ready to state a theorem which relates exponential

Lyapunov stability to I/O stability, modified slightly from [14,151 .

Theorem 2.3 (Small-Signal Stability) Suppose that x=0 is an

exponentially stable equilibrium point of (2.39) and that the

Lipshitz condition (2.dO) holds. Then system (2.38) is small-signal

Lp-stable, i.e. for all pC[1,®], there exist constants _ and c_ suchP

that whenever x(O)=O, and lu(t) l_c_ Vt, we have that

IlXllp,.r _ "rp IlUlIp,T. (2.45)

Furthermore, the constants are given by
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• (2.46)
_w : _U ala _

: _ --_,- ; p < : (2.47)
_p _ at

c® = min {6, 1-ff-min (h06)} (2.48)
_W s

where properties (2.d2-2.44) hold in B5.

This result shows that if we can prove some things in the state

space framework (Lyapunov stability) we can translate those results

to the I/O domain. There are results [12] that discuss the converse

of this theorem, which we will not present rigorously as they will

not be needed later. Roughly, they say that a reachable

(controllable) and observable realization of an I/O stable system is

globally asymptotically stable and bounded. Thus, it appears that

the concepts of zero-input Lyapunov, or state stability, are quite

closely related to the concept of IlO stability, once we remove

anomalies like uncontrollable and unobservable states. This is

intuitively pleasing, since the two notions come from widely

different viewpoints.

2.3.4 Incremental Stability

Incremental stability is related to the concept of continuity on

signal spaces. The output of an incrementally stable system changes

by an amount not more than proportional to the change in the input

signal. In equations, it says that there exists a k such that for

any two inputs ut and u2, the respective outputs yt and Y2 must obey
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Ilyt-y211T _ k Ilut-u211T V Te_+ (2.'t9)

Consider the situation where ut and u2 are very close to each other.

This should remind us of small-signal linearization and we would

expect that the concepts are related. They are.

Theorem 2.4 Let v£ obey the restriction (2.2).

system x=Pu be described by

= f(x(t).t)+ u(t).

Then P is LW incrementally stable i.e.

IIPut-Pu211® v _ k Ilut-u211_, v VUt,U2_,T_ +

i£ and only if the ltnearized system vP described by
X

_(t) = vfCxCt),t)_Ct) + wet)

is uniformly Lw-stable for all possible trajectories xE_, i.e.

II_II®v _ k llwll®,v; V wf-_,v¢_+

for all possible trajectories xe2.

Let the nonlinear

(2.50)

(2.51)

(2.52)

(2.$3)

Proof See appendix A.

Remark This theorem requires that the B matrix in both the

linearlzed and nonlinear equations be the identity. We could do away

with this restriction i£ we used some notion o£ controllability, so

that all the behavior of the system could be accessed through the B

matrix. This is related to the exponential stability o£ the previous

section, in which stability wlth an identity B matrix was guaranteed.
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This theorem will be very useful in the next chapter where we

will show that filtering is tied closely to the notion of incremental

stability. There we will extend this theorem somewhat to cover the

L2 case, because of the properties of the extended Kalman filter.

2.4 Closed-Loop Performance

This section will analyze the performance of the closed-loop

system of figure 2-2. The loop operator T=PK was briefly discussed

in section 2.3.1. Here we judge the performance by how well the

system follows commands and rejects disturbances, i.e. by how small

e=r-y is. "For this case, we set w=O. Let

Hy r := T[I+T] -1 (2.54)

be the map from r to y in the closed-loop system, when d=O. Then, as

derived in section 2.3.1

y = d + Hyr(r-d ) (2.55)

Theorem 2.S [16] If. for all rC_f._and for all dE___

II[I+T]-l(r-d)ll v << IIr-dll T; VTEB., (2.56)

then e = r-y - 0 on • and _ in the sense that

= + Ildll • VrE_,dC_,TEB+IlellT IIr--ylIT << IlrllT T' " " (2.57)
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Proof See [16]

Remark 1 This theorem shows the linearizing effect of high gain

feedback (an identity map is linear). It is a generalization of the

original work of Bode [17] for linear systems, and can be stated in a

much more general way, where instead of unity feedback as in figure

2-2. there is an operator F [16]. In that case, the conclusion for

high gains is, as expected, that H --_F-1.
yr

Remark 2 The sets • and $ are analogous to frequency ranges in the

linear theory situation, but present more of a problem. The test

(2.56) must be checked for every signal in the sets _ and _; we are

not so lucky as to have all the signals of a given frequency but

varying amplitudes give the same behavior. The basic idea in using

theorem 2.5 is to think of _ and • containing the signals for which

good command following and disturbance rejection are desired.

Typically, these will be all the "low frequency" signals. Section

2.6 will discuss these issues in more detail.

Remark 3 Theorem 2.5 also shows that we selected a useful

definition for stability, because we have the result that our

stability with high gain produces small errors, which is a

fundamental requirement.

We can use theorem 2.5 to relate the error magnitude to the open

loop gain, as in the self-explanatory result:
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Theorem 2.6

II[ I+T]- IX{IT

Ilxll
T

Let u : [I+T]-lx.

Ilull
T

= i1[ I+T]ull T

IITull T= Ilull r

Then

llull
T

IITull - Ilull
T T

(2.5s)

Thus we see that we can relate the size o£ the sensitivity (or

error) operator, [I+T] -1. to the size of the open-loop gain. The

engineering rule-of- thumb which tells us that We need a loop gain

of, say, greater than 100 for errors of less than 1_ still applies.

2.5 Closed-Loop Stability Robustness

This section will investigate the issue of stability robustness.

Roughly speaking, stability robustness refers to the amount o£

perturbation that a nominally stable closed-loop system can withstand

and still be guaranteed stable. We want to be able to check that our

closed-loop designs are robustly stable, and i£ they are not, would

like some help in redesigning them so that they are in fact robust

with respect to closed-loop stability.

T_
_,, the r^'lowing +_....... _ W _l] be assuming th_t w_ h_ve a

nominal loop operator, T. that we know to be closed-loop stable,

along with a particular characterization of the actual loop TA in

terms of the modeling error, E. Obviously, we never really know what

the actual loop TA is, and that is the whole point of the robustness
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tests: If we can bound the error somehow, then we may be able to

guarantee the closed-loop stability of the actual system, m_thout

knowtng TA expLtcttLy.

Theorem2.6 (Robustness Tests)

(a) (Additive Error) Suppose that T is closed-loop stable, i.e.

[I+T] -1 is stable, and

T A = T + E. (2.59)

Then TA will be closed-loop stable i£ there exists a 0<6<I such that

IIEull v _ 6 II(I+T)ullv; VuE_t,TEB+. (2.60)

{b} (Division Error) Suppose that T is closed loop stable and

Z A = T(I+E) -1 (2.61)

Then T A will be closed-loop stable i£ there exists a 0<6<1 such that

and

IIEull v _ 6 II(I+T)ulIT; VuE_,TEB+ (2.62)

IIEll < w. (2.63)

(c} (Subtractive Error) Let T be closed-loop stable,

E = TA 1 - T-I.

let ET be stable, and let the set _ be defined by

(2.64)

:= (x = Tu I uE_ ). (2.65)
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Then TA will be closed-loop stable if there exists 0<5<1 such that

or

IIETull T _ 5 II(I+T)ull T;

IIEull T _ 8 II(I+T-1)ull.r;

Vue_.TeB+, (2.66)

Vue_,TeB+. (2.67)

(d) (Multiplicative Error)

T A = (I+E)T,

and the set _ be defined by

Let T be closed-loop stable,

(2.6s)

:= {x = Tu I ue_ } (2.69)

Then T A will be closed-loop stable i£ there exists 0<5<1 such that

either

or

IIETull T _ II(I+T)ulIT; Vue_,Te_+, (2.70)

IIEull T _ II(I+T-1)UlIT; Vue_,TeR+. (2.71)

Figure 2-3 gives an interpretation o£ the error E for each of

these representations (a-d). In each case, the dashed box represents

the actual plant TA for each de£1nltlon of the error E.
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Figure 2-3: Robustness Tests
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Proof

(a} ll(I÷T)uli
'7"

Thus

= II(I+TA-E)ull T _ II(I+TA)ull T + IIEull T

+ 6 IICI+T)ulIT, VuE_,TE_÷.II(I+TA)ull T

II (I+T)ull v _ 1-_ II(I+TA)UlIT; VuE2, TEB+.

(2°72)

(2.73)

Since T is closed-loop stable, there exists an e>O such that

1 llvll (2.74)II(I+T)-lvlIT -<"a" T

and letting u=(I+T)-lv, we have

a Ilull T _ II(I+T)UlIT; VUE_,TE_+. (2.75)

Combining (2.73) and (2.75): -

e Ilull v _ _ II(I+TA)Ullr ; VuE_£,TER_ (2.76)

and so TA is closed-loop stable with gain

1
II[I+TA]-lll _ (1-5) II[I+T]-lll (2.77)

{b} T A will be closed-loop stable if the following has finite gain:

[I+TA]-I = [I + T(I+E)-I] -1 = E(I+E+T)(I+E)-I] -1

= (I+E)(I+E+T) -1 (2.78)
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Applying theorem 2.6a, T+E is closed-loop stable and so

II[I+TA]-lll _ (I+IIEII) _ II[I+T]-lll < _. (2.79)

(c} Since TA=[E+T-I]-I = T[ET+I] -I, we can apply the division error

to conclude that T A will be closed-loop stable if ET is stable and

(2.66) holds. Letting x=Tu, we get the second result (2.67). The

gain is

I+IIETII II[I+T]-lll (2.SO)II(I+TA)-lll _ 1-6

{d) Since

TA = (I+E)T = T + ET (2.81)

we can apply the additive error test (theorem 2.6a) to conclude that

TA will be closed-loop stable it

IIETull v _ 6 II(I+T)ulIT; VuE_t,TEB+. (2.82)

Letting x=Tu, this will be true t£

--1)xlIT;IIExll v _ 6 II(I+T VxE_o,TEB +. (2.83)

The gain is

II(I+TA)-lll _ _ II(I+T) -1". I (2.s4)
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Remark 1 These robustness tests are similar to the frequency domain

singular value tests used for linear systems [3]. For example, if

T(s) is a closed-loop stable transfer function matrix and

TA(S)=T(s)[I+E(s)]-I. then TA(S ) will be closed-loop stable if

amax[Z(j_)] < amin[I+T(je)]; VecR. (2.ss)

Compare this to theorem 2.6b. Note that. as in the performance tests

of section 2.4. we must check conditions for all signals in some

"large" set instead of just along the real llne (2.$5). We will

discuss this issue in more detail in the next section.

Remark 2 The incremental versions of these robustness tests are

very similar and are proved the same way. They say that if the

nominal loop is incrementally closed-loop stable, and the error is

incrementally bounded in a certain sense, then the actual system will

be closed-loop incrementally stable.

We first present an example o£ how to use these tests.

Theorem 2.7 (2-norm bounds in frequency domain)

linear operator and H(Je) its Fourier transform.

Let H be a stable

Then if Ilul12<_,

and

IIHull2,v _ IIHull2 -< sup IGcJ )l Ilull 2, (2.86)
¢0

IIHu 112
,,H,,2 = sup .T _< sup lG(J_)l. (2.s7)

uf-,,_e llull2,T e

TE_+
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Proof Using Parseval's theore m.

IIHul122 -- l CJ ) CJ )12d_

sup Ificjc,.,)1211u1122. (2.ss)

the rest follows from definitions. R

Remaxk In general, the bounds involving IH(J )Icannot be satisfied

with equality unless [HCJ_)I is constant for all _ where uCj_ ) is

nonzero.

Theorem 2.8 (Multivariable Gain and Phase Margins) Suppose we have

a system that we know to be closed-loop stable and its loop operator

T satisfies

II[I+T]ulI2,T > e; Vu£M,Te_+. C2.89)

Then the closed-loop system has the following margins, in each

channel:

Gain Margin:
1 1

(1-_Le'T-L)
2

Phase Margin: 18 1 < cos-l(1_ e_-).

that is. representing the linear operator L by its Fourier Transform

_.(j_). with _.(j_) = diag {ei(J_)). i--1 ..... m. and for all i. either
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or

1 1
eiCJ. ) = e i c (1-'_g" 1--'_) (2.90)

2

lei(J_)l=l, I_gle ei(je)l < cos-l(1 - e_--), (2.91)

then TL will be closed-loop stable. See figure 2-4.

Proof Since the L we will be contemplating is linear (gains and

phases only), we can use theorem 2.7 to convert the error into the

frequency domain. We use theorem 2.6b and conclude that the system

will be closed-loop stable if, for 5<1,

II[L -1 - I]ull2, v < 5 II[I+T]ull2, • VuE_,TEA+
T' t

(2.92)

or, by (2.89) if

II[L -1 - I]ll 2 < e. (2.93)

Using theorem 2.7, we require

or for gain:

ll[_.-l(j(a)- I]ll < e, (2.94)

-1
-e < (e t - 1) < e (2.95)

1 1
> et > 1-"_'e" (2.96)

For the phase, let O be the angle o£ phase shift of ei(ju ). Then
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Figure 2-d: Robustness Test Application
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and

s.p leje_ II <

lsln2e+ (cos e -1)21 < e2

12-2cos el < 2 |

(2.97)

(2.98)

(2.99)

2.6 Computation of Tests

The actual computation of the nonlinear performance and

robustness tests covered in this chapter is a rather difficult issue

that will require much additional research. In this section, we will

comment on a few possibilities for actully performing these tests in

a practical manner.

The typical test that we are discussing is of the following

form: Let the set _:2_ be a given subset of a signal space _. Then

we must check to see if

a(x) < _(x);- V x£_. (2.100)

If the set • were more like _, then our course of action would be

clear. We would evaluate (2.100) on some smaller set, say the set

where we select e to be small enough to "cover" all the behavior o£

the function a(-), and M is picked large enough to "cover" the

maximum range expected to be o£ significance. We would be justified

in doing things this way if a(-_ were smooth enough so that we did

not miss any behavior that "fell through the net". The analogous

situation for the (2.100) wo_Id be to find some managable, smaller
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set _ that we could actually calculate (2.100) for. Then. if a

were smooth enough, and the members of _ were close enough together,

we would not miss any behavior. We would thus like to find the set

_, together with a theorem that we could prove, saying in effect,

that if (2.100) held on _, it would be true on all of _. This is the

principle that we use all the time for the set of real numbers, and

it seems likely that it can be done. albeit carefully, for signal

spaces.

One possible solution to this problem is to learn a trick from

describing function theory C29,30_. In describing function theory,

the set _ is usually taken to be a collection of sinusoids at

different frequencies and amplitudes, i.e.

= { Asln et I ACE-M,M 3. ee[el,e2] ) (2.1o2)

and performance and stability are Judged on the basis of the set _.

Now, stability is a much more complex (and delicate) issue, and while

it may be possible to prove some theorems for stability of the type

alluded to above, this has not been done yet. However, the

performance and robustness issue may be more tractable. Perhaps one

could check performance be a grid of signals, with amplitude in one

direction and magnitude in the other.

Another issue along similar lines is the actual posing of

specifications. Since it would be impractical to specify p in

(2.120) for each xEG, we need a more compact way of specifying p.

Again. perhaps describing function theory could be of help. For
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example, we might specify performance/robustness for a control system

as the sets In which A and e must lie for x=Asinet:

IIGxll
> 20 w _ 2 rad/sec. A > 20 (2.103a)Ilxll

IIGxll
UxI---'T_ 10 _ _ 2 rad/sec, A _ 20 (2. 103b)

IIGxII
Ilxll _ 1 e ) 40 rad/sec. (2. 103c)

How one comes up with such a specification is a very complex issue in

its own right which we will not address here.

Another possible way o£ posing specifications is to use a

"chirp". or swept sine-wave signal. This type of signal, which

consists of a constant amplitude sine-wave with a frequency that

increases exponentially in time. might allow one to look at the time

response of. say, the sensitivity operator, and interpret its

envelope as a frequency response. Section 5.6 demonstates this idea

on a nonlinear pendulum example.

We are now in a (theoretical) position to evaluate a given loop

operator when presented with It. The next two chapters will deal

with the issue of synthesis: How do we design a compensator to give

a loop operator that will test "good" using the techniques presented

In thls chapter?
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CHAFrER3. _IS: ESTINATION AND CONTROL

3.1 Introduction

In chapter 2, we studied the analysis of a given feedback loop

in terms o£ its stability, robustness, and performance. The purpose

of this chapter is to present methods for actually constructing a

compensator to achieve closed-loop stability for a given plant model.

The issues of performance and robustness will be covered in chapter

4. This chapter is structured as follows. Section 3.2 discusses the

separation principle that allows us to break the problem o£

stabilization into two pieces: estimation and control. Section 3.3

discusses specific estimators with emphasis on the extended Kalman

filter and the guaranteed properties that it possesses making it

useful for control system design. Similarly, section 3.4 discusses

state feedback controllers With emphasis on the guaranteed properties

possessed by the solution to certain optimal control problems, and

their relevance to feedback loop properties.

3.2 Separation of EstlmatlonandControi

The separation principle to be presented in this section allows

us to separate the stabilization problem into two parts that can each

be tackled separately. This provides the justification for the

estimation and control approach to control system design, in which

the compensator contains a state estimator and state feedback gain.
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Consider the linear situation first. There we design a Kalman

filter to estimate the state of a linear system given the output

observations, and a state-feedback gain that would stabilize the

system if the state were available for direct measurement. For

example, consider

x(t) = A x(t) + B u(t)

y(t) = C x(t)

(3.1a)

(3.1b)

with the Kalman filter

x(t) = A x(t) + B u(t) + H[y(t) - Cx(t)] (3.2)

and s tare-feedback

U(t) = - G X(t) (3.3)

One of the most fundamental results of linear system theory is that

the closed-loop eigenvalues of such a system are the eigenvalues of

the Kalman filter and the closed-loop eigenvalues that would result

from the exact state being used instead the estimated state. Thus,

the closed-loop eigenvalues are

ki[A-BC]; i=1,2 ..... n (3.d)

and

XI[A-HC]; i=1,2 ..... n. (3.5)

Thus we see that if (a) the filter produces "good" estimates, and (b)

the state-feedback would stabilize the system itself, then the
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combination stabilizes the linear system (3.1). See £igure 3-I.

While the usual proof of this result relies on the assumed linearity

to decouple the closed-loop equations, the result is by no means

restricted to the linear case.

In order to generalize this result, we first need to define a

"good" estimator. The terminology used here is due to [6,43].

Definition x=F(y,u) is a nomltvergent esttnu:te o£ the state x of

x(t) = f(x(t)) + Bu(t) + Bw(t)

YCt) = Cx(t) + d(t)

(3.6a)

(3.6b)

i£ the mapping (w,d)ee=x-x is stable uniformly in u. Here F is the

dynamic operator representing the estimator with inputs y and u, and

w and d are disturbances that are considered deterministic (but of

course unknown to the estimator). To be more precise, we say that

the estimator is nondlvergeht with respect to a specific norm if the

m_pplng (w,d)_e is stable with respect to that norm.

Definition I£ there exists a nondivergent estimator x=F(y,u) for

(3.6), then we say that the system (3.6) is delectable.

We can now state and prove our main separation result:

Theorem 3.1 (Separation Theorem [6]) If g(-) is a stabilizing

state-feedback function, i.e. if

x(t) = f(x(t)) - Bg(x(t)) + Bw(t)

is stable w_x, and

supIvgcx)l< ®
X

(3.7)

(3.8)
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Figure 3-1: Separation o£ Estimation and Control
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and if x=F(y,u) is any nondivergent estimate o£ x, then

xC t) = fCxCt)) - BgCxCt)) + BwCt) (3.9)

is stable (w,d)_x. Here we mean stability with respect to the same

norm used for the stability of (3.7) and for the nondivergence o£ the
A

state estimate x.

Proof The closed-loop system is

x = f(x) - Bg(x) + Bw = f(x) - Bg(x) + B(g(x)-g(x)+w). (3.10)

Since g(x) stabilizes the system, there must exist a kl such that

^ i i A

llxll < klllg(x)-g(x)+wll v _ k_lvgl-IIx-xll + killwll • VTEIR. (3 11)T - T T' " "

Since F is a nondivergent estimator, there must exist k 2 such that

IIx-xII v ( k211(w,d)llT; VvC_÷ (3.12)

_nd so

+ k_llwll ,; VTCIR+,IIxlIT < k'Ivglk2B(w'd)BT T (3.13)

and so the system is closed-loop stable.
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Remark 1 This theorem now allows us to design separately a

stabilizing state-feedback function and a nondivergent estimator,

with the knowledge that we can put them together and be guaranteed a

closed-loop stable system. Note that the stability is not just from

a single input, but from both "inputs" (w.d) simultaneously. This

guarantees that there will be no unstable hidden modes in the

closed-loop system, i.e. it rules out the analog of right-half plane

pole-zero cancellations between the compensator and plant in linear

systems. This is required (and sufficient) to allow a practical

command following system to work. This is the approach that will be

taken in this thesis.

Remark 2 In the linear case. the stochastic optimal control

(Linear-Quadratic-Guassian. or LQG) problem solution [50] decouples

into an optimal estimation problem and an optimal state-feedback

control problem, sometimes refered to as the certainty equivalence

property. We do not mean tO imply that the nonlinear stochastic

optimal control problem [53] has a similar property; only that we can

stabtt_ze nonlinear systems by this separation process.

Remark 3 In the literature, there exist many tests for stability of

a closed-loop system [4.5.6.7. and many others]. All of these are

based on versions o£ the small-galn theorem and/or passivity

theorems. The problem with any o£ these tests is that they require

that either one or both of the compensator and plant must be

open-loop stable. Since there are some linear systems which cannot

be stabilized with a stable compensator, we would expect the same to

be true for some nonlinear systems. Thus these tests would beuseless
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in trying to determine the closed-loop stability of a proposed

compensator for such a plant. The separation theorem above has no

such problem. It works equally well on open-loop unstable plants and

compensators. Thus it could almost be viewed as a type of stability

test fundamentally different from pre-existing ones of the small-gain

or passivity type.

Remark _ If the condition (3.8) is not satisfied globally, we can

still make a small-signal version of the conclusion. Equation (3.8)

should hold (if g is smooth) in any bounded subset of _n and thus if

we put the correct bounds on the size of the inputs w,r,d, we can

A

make sure that x,x remain in that bounded subset. This allows us to

guarantee closed-loop stability for inputs with magnitudes below some

specific value.

We now present additional results on estimation.

Theorem 3.2 Let x=F(y,u) 5e an estimate for (3.6). Then the

r 11 .xol_owlng are equivalent:

A

(a) x is a nondiverge_t estimate for x.

(b) x = F(y-d,u+w), and F is incrementally stable in the special

sense that

IIF(y-d,u+w}-F(y,u)ll T _ II(w,d)llT; VTE_÷, u,w,dE_ (3.14)

where y is determined by the choice of u,w,dE_.

Proof (a) implies (b):
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From inspection of figure 3-1, y-d is _he signal at the output

of the plant and u+w is the signal at the input to the plant. Thus,

if the estimator acts on (y-d,u+w), it will act as if there were no

notses and must produce zero estimation error, as it is nondivergent:

IIx-xll T = < k II(w,d) llT; VTEIR+,w,dE_. (3.15)

Therefore, we have

IIx-xll v = IlF(y-d,u+w)-F(y,u)ll v _ kll(w.d)llr; VTE_+.u,w.dE_ (3.16)

where y is determined by u,w,dE_.

(b) implies (a):

Ilell r _ IIx-xll r = IIFCy-d,u+w)-F(y.u)ll v _ k IlCw,d)llv; VTE_+ (3.17)

for all w,d.uE_ because F is incrementally stable. I

Remark The statement (b) of theorem 3.2 cannot be the standard

definition of incremental stability. This is because we cannot quite

exercise all the signals, as y is determined by choice of u,w, and d.

Note that it is incrementally stable if we consider only the second

argument of F (the u, u+w terms), or, equivalently, fix d and vary w.
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Theorem 3.3 Let x=F(y,u I be a nondivergent estimator for (3.61 with

constant k in (3.151 . Then

11F(y,u)llv _ k II(y,u)llv; V y,uE_,TEB+. (3.18)

Proof Let w=-u, so that x=O and y=d. Then

[fellT = [lx-xliT = [IF(y-d'u+w)-F(y'ulIIT = [[F(O'OI-F(y'uIIIT

= lIFCy,u)llv _ k 11(y.u)llv; V TE_., (3.191

by nondivergence.

Theorem 3.4

system is in _.

Proof

and

IlxU = Ilxll
T

If a system described by (3.61 is detectable, then that

Let (w,d)=O. Then the estimator produces exact estimates,

= IIF(y,u)ll T <:-k II(y,u)ll v <_ k, llyll T + k211UllT,T
(3.201

where the constants kl,k_ exist by "the definition of I1(',°111. I

Thco_e- _ _ _f f_ _ _ _v_ment_l]v stable from uex then it is

detectable and thus there exists a nondivergent estimator for it.

A

Proof Simply use as an estimator x--CBu. Then

Ilell T = Ilx-xll T _ II_Bllhllwll T

which makes the estimate nondlvergent.

(3.21)

-69-



Remark Now we see that we can actually use the internal stability

results of section 2.3.2, as now can present a class of systems that

are all in _: the set o£ detectable systems.

3.3 State Estimators

3.3.1 .Introduction

The separation theorem Justifies a search for a nondivergent

estimator, as it guarantees that we will be abie to use it in the

final closed-loop system. In this section we proceed to examine

specific state estimators. We start in section 3.3.2 by examining

optimal estimation algorithms. Although they might be guaranteed

nondivergent, we show that they have some rather severe computational

requirements, in general. Even with the astounding computational

advances o£ the past decade, we still cannot do optimal estimation in

real time for reasonable problems (except for linear systems}.

Therefore we look to other, more approximate, estimators and

observers. In section 3.3.3 and 3.3.4, we examine the extended

Kalman filter and show that it has some remarkable guaranteed

properties, including nondivergence. We continue the examination by

looking at simpler, constant linear gain observers in section 3.3.5

and a special form o£ observer that we shall call the transformation

based obseuver in section 3.3.6. Related material appears in

appendices C and D. Appendix C discusses a promising new observer

and appendix D shows the guaranteed properties of the optimal

nonlinear estimator.
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3.3.2 Optimal Nonlinear Estimation and Its Problems

For comparision purposes, we consider the optimal deterministic

estimator at first. For review, the goal is as follows. For the

system (3.6), find a dynamic system x=F(y,u) that is nondivergent,

i.e.

Ilell T = IIx-xll T _ k II(w,d)llT; VTEIR+, w,d,uC_. ,(3.22)

One way of posing an optimal estimation problem is to use a minimum

energy approach [34,35]. In this approach, one selects the estimate

x(T) as the endpoint of the minimum energy trajectory, i.e. the one

that minimizes

J = Ely-czl 2 + qlwl 2 ]dt (3.23)

where

z = f(z) + Bu + Bw (3.24)

xCT) = z(T). (3.2,5)

The solution to this optimization problem is as follows:

x(T) = argmln Y(x,T) (3.26)
uP
A

where V(x,t)>0 satisfies the partial differential equation

, 1 T
V t = [y(t)-cx]T[y(t)-Cx] -- Vx f(x) - 2Vx HVx

where _==ET>o and

(3.27)
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[av av av ]T:= m (3.28)•
Vx @x 1 ax 2 ax n

V(x.O) = Vo(x). (3.29)

Vo is the initial condition for the partial differential equation and

corresponds to the a priori probability density in a stochastic

A

problem. The estimate x given by (3.26) evolves according to

x
xCt) = fCxCt)) + BuCt) + V -1(x.t)[yCt)-c_ct)]

XX
(3.30)

where V is the matrix of second partials of V.
xx

In appendix D, we show that the optimal nonlinear filter has a

guaranteed return difference condition property. The reader may wish

to postpone refering to appendix D until after sections 3.3.d and

3.d.3 which detail similar properties for the extended Kalman filter

and the optimal nonlinear regulator.

The problem with the optimal nonlinear estimator presented above

is that it is infinite-dimensional. To compute it, one must actually

compute the solution to the partial differential equation (3.27) in

real time. An actual implementation would require the storage and

update of V(x,t) at each discretization interval. Consider just the

storage requirements for V(x,t) for some fixed t. If we discretize

the state space into just, say, 100 segments in each dimension, we

see that the storage requirements for a system o£ only d states is

1004 = 108. This is an incredible amount of storage, and we'have not

yet even considered that we must update each of these locations at
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each discretization interval in time. Thus we must conclude, that

for even moderately complex systems, with the time scales that we

tend to see in typical control applications, this is far too much

storage and computation.

In the linear case, we have several simplifying phenomena. The

partial differenial equation turns out to be finite-dimensional, and

Vxx turns out to be independent of the measurements. As we let time

-1
go to infinity, Vxx approaches the steady-state covariance of the

system, and we get the steady-state Kalman filter, with its even

further reduced computational burden (the covariance is constant in

time).

Remark 1 If we had a relatively slow system of not too high order.

we might be able to calculate the optimal state estimate. Such

systems might appear in the process control industry, however in the

case of such slow systems, other types of estimation might be more

suitable.

Remark 2 There are many other formulations of the optimal r.1,1_tering

problem in the stochastic case, depending on the exact cost "

functional chosen. For example, see [36,37.38,39]. Unfortunately,

they a!! have the drawback of requiring the solution in real time of

a partial differential equation with no useful steady-state solution.

Remark 3 In the literature, there are some examples of finite-

dimensional exact estimators. These are special cases of the

estimator discussed above, in which the filter just happens to be
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finite-dimensional. These cases seem to b_ rather restrictive. In

fact. it can be proven that. in general (i.e. generically), the

optimal nonlinear estimator is infinite-dimensional [40].

The above rather unpleasant state of affairs motivates us to

look beyond optimal estimation to some type of approximate estimator.

There are a great many approximate estimators or observers in the

literature [35.37.41,42.43.44.45]. Some of these have conditions

that can be checked to ensure the nondivergence of the state

estimate. For example. [41.43] involve checking the uniform positive

definiteness of an operator or matrix over a vector space (see

section 3.3.5). while [44] involves checking the boundedness of the

solution of a specific matrix differential equation. However, none

of these aprroximate estimators have any documented guaranteed

properties (i.e. ones that can be verified easily a priori), such as

nondivergence, that we would like in order to use them for control

system design. Fortunately; there do exist nonlinear approximate

filters with guaranteed properties. We present two of these in this

thesis, namely the'costate observer and the extended Kalman fLlter.

Appendix C presents the results of a preliminary investigation into a

new type of filter, the costate observer. In the next two sections,

we present the results of research on the extended Kalman filter

(EKF) and its guaranteed properties, including its nondivergence.
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3.3.3 The Extended Kalman Filter and Nondivergence

The extended Kalman filter (EKF) was proposed as an engineering

extension to the popular Kalman Filter for linear systems [35].

Later references are [39,46]. The EKF as we will use it for the

nonlinear system (3.6) _s

xCt) = fCxCt)) + BuCt) + HCt)[yCt)-CxCt)]; xCO)=xo

H(t) = Y.(t)C T

Y.Ct) = vfCxCt))Y.Ct) + Y.Ct){vfCxCt))) T + _ - F.Ct)cTcF.ct)

Y-Cto) = Y-o; to<O.

(3.31)

(3.32)

(3.33)

(3.34)

Here, the symmetric and at least positive semidefinite matrix _ is

one o£ the design parameters of the EKF. We shall frequently refer

to the square-root of _, written _1/2., defined as the full-rank

matrix F such that

rrT = = (3.35)

The other parameters of the EKF are the initial time to<0 and the

initial state for theocovariance propogation equation (3.33). The

results reported here will require a "start-up" period for the EKF if

it is to be initialized with arbitrary _o; that is, we must have to<c

for some c(0 and (3.31) starts at t=0. Obviously, we could start the

EKF at to=O if we selected an appropriate _o- This is the procedure

that would be used in practice.

The rationale for the EKF was that if the noises were small

A

enough, x_x, and one would be justified in using the standard

time-varying Kalman filter because (3.33) would then be a good
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approximation of the true error covariance. It turned out that the

EKF was very good in practice and many papers and applications were

reported of the EKF and its variants, including [47,48]. As we shall

show, this was not just pure chance, but a consequence of certain

guaranteed properties possessed by the EKF.

We start by making some definitions based on [49].

Definition We say that [A(-),C(')] is uniformly observable if for

the linear time varying (LTV) system

=

y(t) =

(3.36a)

(3.36b)

there exist constants a._.a such that the observability grammian

W(to.tt) := cT(s.t,)cT(t)C(t)¢(s.tl)ds

to
(3.37)

is bounded uniformly

_I > W(to.to+a) > aI > 0 (3.38)

for all toE_÷. Here ¢ is the state transition matrix for the linear

system (3.36a). Similarly, we say that [A(*).B(*)] is untformly

controllable if for the linear time-varying system

_(t} = A(t)_(t) + B(t)u(t); _(0)=_o (3.39)

there exist a,p,o such that the controllability grammian
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t'BT t'°TcC(to,tl) := _(tl,s)B( tl ,s)ds (3.40)

is bounded uniformly

pI > C(to,to+a ) > aI > 0 (3.41)

for all toE_ +.

Remark If we make the further assumption that A(t) < M for some

constant M, then the upper bounds in (3.38) and (3.41) are satisfied

automatically. Recall that for constant linear systems, the crucial

part of observability and controllability are the lower bounds, i.e.

the positive definiteness of the grammians.

Definition A nonlinear system If,C] of the form (3.6) is

L-observabte (for Linearization observable), if uniformly for every

possible trajectory xE_, the linearized system [vf(x(-)),C(-)] is

uniformly observable. Similarly, the nonlinear system If,B] is

_1/2]L-controttabte (for Llnearlzation controllable) if Err(x(-)),= is

uniformly controllable, uniform across all trajectories x(*). The

uniformity across trajectories here means that the bounds a,p in the

definitions of uniform observability and controllability are the same

for all x(-)C_.

Definition A nonlinear system [£,C] of the form (3.6) is

M-detectabte (for Model-based detectable) if there exists a matrix

functional H(t,y(s),u(s),O_s<t), depending on the past o£ y and u,

such that for any matrix B in our plant model (3.6), the state

estimate given by
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x(t) = f(x) + Bu(t) + H(t,y(s),u(s),O<s<t)[y(t)-Cx(t)] (3.42)

is nondivergent, uniformly for all matrices B, i.e. for all BE_ nxp

and for all p. In addition, the functional H must be bounded in

time. and continuous, not necessarily uniformly, with respect to

y(-).

if

then

This means that given a e.T>O, there exists a _(e,T) such that

llyl-y211m v _ n(e,T) (3.43)

JH(t,yl(s),u(s), O_s_t)C-H(t,y2(s),u(s),O_s_t)cJ _ e; V O_tgv. (3.44)

Remark The matrix function H(-) in (3.42) can depend in any way on

the past of u and y. Thus it includes the optimal infinite-

dimensional observer discussed in section 3.3.1, as well as the EKF,

and a host of other approximate observers. Additionally, the

observer (3.42) must be nondivergent independent of B. This is in

keeping with the linear theory, where choice of B matrix does not

influence observability. Thus, H-detectability is one of the most

fundamental definitions for detectability that one can make, since it

is operational in nature: If the system is not M-detectable then we

cannot find an estimator that will be nondivergent for all choices of

the B matrix. In this sense it is analogous to detectability in

linear system theory.
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We now state our results pertaining to the EKF:

Ca)

Cb)

Cc)

Theorem 3.6 Let f obey the gradient restriction (2.2).

Umin[_ + _Ct)cTc_ct)] _ e > O; VtE_+,

and one of the following holds:

If,C] is M-detectable and jr,El/2] is L-controllable.

[f,C] is L-observable and [f,E1/2] is L-controllable,

_I 2 _(t) 2 aI > O; Vt£_+,

then the EKF (3.31-3.34) is a nondivergent estimator for the

nonlinear system (3.6). Furthermore, (a) implies (c), and (b)

implies (c).

Then if

C3.45)

_C t) is bounded in time, i.e. there exist a,D>O such that

(3.46)

Proof See Appendix B. The steps in the proof can be read for a

sketch if the reader is not interested in the details.

Remark 1 This is a very useful theorem, as it says that if any

nondivergent estimgtor exists, then the EKF will also work for
@

control purposes. Note that this nondivergenbce is global, as it

_y_ nothing about the noises w,d being small. Note further that the

condition (3.45) can be easily satisfied by picking E positive

definite, as can the condition for [f,E 1/2] being L-controllable.

When = is positive semi-definite the conditions (3.45) and [f,E 1/2]

controllable are more difficult to check. It would seem that it
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should only require some form of stabilizability for [f,H1/2], where

we would require the existence of a stabilizing state feedback

function, but at this time this is not known.

Remark 2 One should be able to prove a stochastic version of this

theorem, perhaps by using a norm [Ixl[ that was related to the

covariance of x(t). In addition, due to the connection of the EKF

with the linear Kalman filter, one would also expect some result

saying, in effect, that no other filter has a better local estimation

error covariance.

Remark 3 If one were optimistic, one would be tempted to draw the

conclusion that a dual result to this EKF nondivergence result could

be made, that is, using some form of the time-varying Linear-

Quadratic regulator problem [50], one could derive guaranteed stable

state feedback functions without having to solve partial differential

equations. Unfortunately, this cannot work, as the control matrix

Ricatti equation must be propagated backwards in time, and we do not

know what our linearized trajectory will be at any time in the

future. We are lucky in the filtering case, as the Kalman filter
U

runs forward in time, and we do not need to know A(t) for any time in

the future.

3.3.4 Guaranteed Properties of the Extended Kalman Filter

The last section proved one very important property of the EKF, its

nondivergence under very general conditions. This allows us to use

the EKF for a control system, as the separation theorem guarantees

closed-loop stability. However, the EKF has a number o£ additional
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important properties, which we present here. As way of an

introduction, we start by giving a useful result for the linear

time-varying Kalman filter.

Theorem 3.7 For the linear time-varying system and Kalman Filter

_(t) = ACt)#(t) + HCt)uCt)

HCt ) = F_Ct)CT

_.(t) = ACt)Y.Ct) + Y.Ct)ACt) + = - F.Ct)cTc_.ct),

YCto)=Yo,

(3.47)

(3.48)

(3.49)

(3.50)

the following hold:

II[ I+CCH]u [I2, T

II[ I+C@H]- lvI[2. T

If[I+(C@H)-I]uII2. v-

Ilul12, V ;

IIvlI2, T ;
1
2" IlulI2,T ;

VU£2, T£B+.

VvE_, TEB+

VuE_, TEB+,

(3.51)

(3.52)

(3.53)

where CCH is the operator mappin_ u_C_ in (3.d7-3.50).

Proof Let

P(t) := _-1(t)

-P(t) = P(t)A(t) + AT(t)P(t) - cTc + P(t)EP(t)

1 _TpvC_.t) = _ (t)_,

dv(f(t),t) = i
dt 2 _T(t)P(t)_(t) + _T(t)P(t)[A(t)_(t)+_(t)cTu(t)]

(3.54)

(3.55)

(3.56)

(3.57)
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and dropping the t argument,

,V T

(3.ss)

Since _(0)=0, and v_>O we are nearly finished.

y with the operator notation:

y = CCH u,

and

v = [I+CCH] u.

The result (3.53) follows by simple algebra.

We simply identify the

(3.s9)

|

(3.60)

Remark This the analog of the linear time-invariant results [3]

ami_[I+CC(s)H] _ 1; s=j_.

Omax[(l+C¢(s)H}-l] _ 1; s=j_,

- I
amax[i+(C¢(s)H ) I] _ 2; s=je.

(3.61)

(3.62)

(3.63)

These results have important implications for the robustness of the

loop CCH. and we shall see that similar results hold for the

nonlinear EKF.
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Theorem 3.8 Let the EKF be a nondivergent estimator by theorem 3.6.

Then the system x=Gu, described by

x(t) = f(x(t)) - H(t)Cx(t) + u(t); x(to)=O (3.6"i)

is L -incrementally stable l_p_ _, where H(t) is the EKF gain based on
P

the linearization A(t)=vf(x(t)).

Proof For L -stability, we use theorem 2.3 and the proof of the EKF
P

nondivergence (where we show that (3.64) is exponentially stable) to

show: for Ilwlloo,T ( e,

IIGu - G(u+w)ll <_ k:zllwll ; VTEIR÷. (3.65)
p,v p,v

We then piece together the whole space • by the same trick as in

theorem 2.4. Fix TE_., let-wE_ be arbitrary, and r=llwll , T.

an integer such that

Let n be

n> r (3.66)
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Then

IIGu-G(u+w) lip. T

= Cu-C u+w_1-)+cCu+w1- -c u+w2- +c u+w2- -In c o n'C n'C n'""

p,T

'_II_u-,_cu-'--_-_ll-,-Ii,_cu,-,,_)-,_cu-'-,,_ll-,-...
p,'r p.T

II,_cu-,-,,_-Gcu-,-,,_)II
p,T

1 ÷ + 1 kallWllp,rn k2 IlWllp, r " " " n

= k2 Ilwll (3.67)
p,T

because

IIl"wll®,r = nr---_ e C3.68)

IIis small-enough to allow us to use the small-signal result.

In general, we will use C_ to indicate the operator where H is

A

determined through the EKF equations (3.31-3.3d) where x is the state

internal to the • operator. Thus, C_H[I+C_H] -1 is given by the map

v_x in C3.64), where uCt)=HCt)vCt ).

Corollary 3.9

Igp<_.

For the EKF, --[I+C_H] -1 is L -incrementally stable,
P
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Proof The map PI=[I+CCH] -1 is given by u_u-CPH(t)u in (3.64) above.

llPiu-P, (u+w) lip.T = {{w + C[PH(t)u-PH(t)(u+w)]llp, T

< [l+{Clk] I:_(t)cI IIwll Vw£_, VT6_+
p,T; (3.69)

where _(t) must be bounded. I

Theorem 3.10 For t=1,2, let uiC_, and let x i be the corresponding

trajectory through the Et_ loop equation (3.64), and H. be the
1

corresponding EKF gain trajectory.

loop in theorem 3.8. Assume that

[lull_ g M

lH,(t)- H2(t)l _;5 Ilu,-u211oo; Vt>t o.

Then i£ k6M<l, then

Let k be the L2-gain o£ the EKF

(3.70)

(3.71)

II[I+CCH]-lu,-[I+C_H]-lu2112, < [ 1 + IcI k26MT - I],----_H ] IIul-u2112,T (3.72)

Proof Define the trajectories:

xl = £(xi) - Ht(t)Cx, + ul;

_2 = f(x2) - H_(t)Cx_ + u_;

xo = f(xa) - Hl(t)Cxo + u2;

_1=u1-Cxl, Xlivj-v,

Ya=u2-Cx2; x2(O)=O, (3.74)

Yo=u2-Cxo; xo(O)=O. (3.75)
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Then we have

II[I+CCH]- lu x- [I+CCH]-I u2112,T

= Ilyi - y2112,, r = Ilyi - Ya + Y3 - y2112, T

+< Ilyt - yall2, v y2112, T. (3.76)

To evaluate the first term, we can use theorem 2.4 and theorem 3.7,

because the systems (3.73) and (3.75) are time-varying in the sense

of theorem 2.4, as the gain H is the same in both (Hi(t)). The

second term we can do the same way, as

xa = f(x3) - H2(t)Cx= + u2 + [H2(t)-H1(t)]C(xa-x2+xz) (3.77)

and so by comparing (3.74) and (3.77),

IIx2--XoII2,T (_ k 6 Ilu2-uilI2,T -{ IIxo--X2112,T + IIx2112,T } (3.78)

and letting r:L-[lu2-u1112,T

k25M
kSr k26r Ilu2 _ 112,IIx2-xolI2,T _ 1-k6r IIx2112,T _ 1-kSM 112,T _"_'M 'llu2-ut T

we also have

(3.79)

Ilyl--yolI2,T _ Ilut--U2112,T (3.80)

by theorem 3.7. Thus, putting it all together
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k26M ]HY'-Y2H2,'r -< 1 + ]C]I_--I-_M ,ul-u2112,.r. 1 (3.81)

Remark This result essentially says that if the EKF gain does not

vary too much from one input to the next, that the loop operator C@H

is a very robust loop. Consult figure 3-2. We can see this by

referring to the robustness theorem 2.6. The main difficulty with

this result is that the trajectory H(t) of the Kalman gain varies

with the input and this affects the linearized trajectory. We want

the linearized trajectory to be the Kalman filter, but it is not

quite due to the term @H/Ou. Thus we need the constraint (3.71) to

bound this effect. Note that the variation o£ H with inputs is a

function of the parameter E. If E=q2BB T, then we know that H/q-*BW

for some orthonormal matrix W, and thus for large q, we should reduce

the constant 6 In (3.71) towards zero. For convenience, we now

summarize the results on the EKF.

Theorem 3.11 (Summary of EKF properties) If the EKF is

nondivergent, then, assuming the constraints o£ (3.70-71) and letting

e := IClk26M
(3.82)

1
:= I+-""_" (3.83)

the following hold with respect to the loop operator shown in figure

3-2 :
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U H(t) C W''-

Figure 3-2: The Filter Loop: C_H
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(a) II(I+C@H)-IlI2,T _ 1 + (3.84)

(b) IICCH(I+CCH)-IlI2,T _ 2 + (3.85)

II (I+C@H) ul12, T 1

(C) IlulI2,T -> l+e - _
(3.86)

II[ I+ (CCH)- 1 ]ul12, T 1

(d) ilull2,v _ 2+--'_
(3.87)

(e) The closed loop system of Figure 3-2 has a gain margin of

[ 1 1 ]GM = ' 1---T

and a phase margin of

PM = +/- cos -1 1 - _- ,

independently and simultaneously in all channels.

(3.88)

(3.89).

Proof The only facts we have not proved as yet are (b) and (d).

(b) IIC¢H[I+CCH]-III = III - [I+C@H]-III < 1 + 1 = _.

(d) II {I+[C@H]-I} -I II= II {[C@H+I][C@H]-I} -1 II

= II CCH[I+CCH] -1 II < 2 + _.

(3.90)

(3.91)

We have shown in these last two sections that the extended

Kalman filter possesses some remarkable properties. We have shown

that the EKF is nondivergent for detectable plants (theorem 3.6), and

-89-



that the filter loop CCH has some good robustness properties. We

shall make use o£ these guaranteed properties when we come to the

NMBC/LOR methodology in section 4.3.

3.3.5 Constant Gain Hodel Based Observers

The EKF studied in the last two sections has some very desirable

guaranteed properties. We would like to use it for control

applications all of the time, but it has one drawback: the

computational burden associated with propagating the covariance

matrix may be prohibitive in certain circumstances. Thus there has

been considerable interest in perhaps choosing a constant linear gain

H to replace the time-varying EKF gain. We now present some results

concerning the choice of H guaranteeing nondivergent estimation for

the nonlinear system (3.6); as shown in figure 3-3. The following is

modified slightly from [41].

Theorem 3.12.

suchthat

uniformly.

Let the constant matrix P=pT>o and constant a>O be

pT[vf(x) - HC +aI] _ O; Vx¢_ n. (3.92)

Then the gain H will produce a nondivergent estimator.

Theorem 3.13 [6] Let the constant matrices P=pT>o , s=sT>o, and A

satisfy the Lyapunov equation

[A-HC]P + P[A-HC] w + S = O. (3.93)
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C

Figure 3-3: Constant Gain Observer Structure

-91-



(a) If

1
[A-vfCx)]P + _ S > 0 (3.94)

uniformly for xE_ n, then the nonlinear observer (estimator) is

nondivergent.

(b) It

[A-f(*)]P + _ > 0 (3.95)

uniformly for xE_ n, then the nonlinear observer is nondivergent.

Theorem 3.14 [43] (Constant Gain Extended Kalman Filter): I£

uniformly

1  cTc }> o.{aI + [A-vf(x)] } $. + _ {-- + (3.96)

then the Constant Gain Extended Kalman Filter (CGEKF) described by

0 = E(A+aI) T + (A+aI)_- _cTcE + =,

H = _C T

(3.97)

(3.98)

is nondivergent, with this constant H being used in figure 3-3 as the

filter gain.

Remark Theorem 3.14 is basically an approximation result. It says

that if a particular observer gain is nondivergent for a particular

linear system (A,B,C), and A is close enough to vf, then the same H

will be a nondivergent filter gain for the nonlinear system. In the

case of the CGEKF, the robustness margins are quite substantial, i.e.
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not just a "e-close" type of result. The good robustness margins are

apparently attributable to the robustness of the Kalman filter,

including the time-varying version which we saw in theorem 3.7. We

now present a new result on CGEKF robustness margins.

Theorem 3.15 (CGEKF robustness margins) Let the CGEKF satisfy the

conditions (3.96-3.98) above, let k be its L 2 nondivergence gain, and

suppose there exists a constant e>O such that

12-1[vf(x) - All _ e; V xEIRn. (3.99)

Then for ali UI,UzE_,TE:R.

II[I+C@H]ut - [I+C@H]u2112, v _ (1-2ek) Ilut-u2112, T. (3.100)

Proof First we examine the equation relating defining the map u_x:

x(t) = f(x(t)) - HCx(t) + u(t); x(O)=O. (3.101)

As we vary u by small amounts, we see that we wiil be looking at the

linearization of (3.101); thus we carl-apply theorem 2.4 and find the

incremental gain (3.100} by looking at the uniform gain of the linear

tlme-varying system:

_(t) = vf(x(t))_(t) - HCf(t) + Hw(t)

Define

p :=_-1

1
v(_) = _ _Tp_.

Then

(3.102)

(3.103)

(3.104)
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dv{f{t)) _ = _T(t)P_(t) = _T(t)P[vf(x(t))]_(t) + _T(t)Cw,
dt =

(3.105)

and

and

+ 2keHwH^ 2 (3 106)llw+C_I[2 v z. v

(1-2ke)llwll2. v _ II['I+C_H']wlI2, v. II (3.107)

Thus we see that if we can bound the deviation of the actual

system, vf, from a nominal value, A, we can retain some o£ the

benefits of the original Kalman filter robustness. For problems that

are not too nonlinear, the CGEKF looks like a good alternative: its

nondivergence can be checked (3.96) and it may retain some large

robustness margins.
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3.3.6 TransformatlonBased Observers

This section discusses a new type of observer that we will call

a transformation based observer. In [26], it is called an observer

with "linearizable error dynamics". The basic idea is to transform

the nonlinear System (3.6) into a form in which a possible Observer

is immediately apparent.

Definition A nonlinear system of the form

= A x(t)

y(t) = C x(t),

+ _(y(t),u(t)) (3.10Sa)

(3.108b)

where _:_mx_m-wRn, is said to be in observer form [51]. Note that the

nonlinearity _(-) depends only on the output vector y(t), not the

entire state vector.

If we have a system in observer form. it is quite apparent that

we can build an observer for it if (A,C) is an observable pair.

Consider the observer possibility

x(t) = A x(t) + _(y(t),u(t)) + H [y(t) - C x(t)] (3.109)

A

The error dynamics for e=x-x are given by

e(t) = [A - HC] e(t) (3.110)

and so clearly if we select H so that A-HC is stable, we will have

exponential decay of the state estimation error.
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If we modify the problem slightly to follow our philosophy, we

would add some deterministic process and observation noise. Our

system is now

_(t) = A xCt) + _CYCt).uCt))+ B wCt)

yCt) = C x(t) + dCt).

We now can show the following easy result.

(3.111a)

(3.111b)

Theorem 3.16 The observer (3.109) is a nondivergent observer for

(3.111) if we select H so that A-HC is stable.

Proof The error dynamics are

e(t) = [A - HC] e(t) + B w(t) + H d(t)

and if A-HC is stable, then (3.112) is L -stable for all p.
P

map (w,d)_e is stable and the observer is nondivergent.

(3.112)

Thus the

Remark 1 Unfortunately, most systems that we encounter will not be

in observer form. Note, however, that there might exist a state

transformation taking our original system (3.6) into observer form
B

(3.109). In [26], conditions are given under which it is possible to

transform a given nonlinear system into observer form. Preliminary

research has indicated that this conversion is not very generic,

i.e., not very many systems can be transformed this way. This is in

contradistinction to the dual controller case, to be discussed in

section 3.4.5. Even if exact transformation to observer form is not

possible, there may be an approximate transformation which could be

used with some form of robustness test to guarantee nondivergence.
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Remark 2 If we have the freedom to select our output variables, we

can easily put a nonlinear system in observer form. If every state

variable is involved in our original nonlinearity f(-), though, this

may require the measurement of all the state variables.

We have now discussed various filters with regard to their

nondivergence and return difference properties. In section 3.3.2 and

appendix D, we covered the optimal nonlinear estimator and showed

that while it had good return difference properties, it was far too

computationally intensive. Notlvated by the relationship between

incremental stability and uniform stability of linearized systems as

discussed in section 2.3.4, we investigated the extended Kalman

filter (EKF) in section 3.3.3 and 3.3.4. We were able to show that

the EKF is nondivergent for all M-detectable plants (ones for which a

nondivergent model based observer exists) and that furthermore, it

possesses some desirable return dlffernence conditions, making the

filter loop CCH a "good" loop operator. In section 3.3.5, we

continued by investigating the constant gain model based observers,

where we gave conditions for checking the nondivergence of specific

observers, involving the checking of the uniform positive

definiteness of a m_trix for al! points in ................mn w_ then d_scussed the

transformation based observers in section 3.3.6, where the idea is to

tranform the plant into a form that allows an observer to be easily

built with linear error dynamics. Finally, in appendix C, we

discussed some preliminary results on the costate observer, which has

some guaranteed loop properties, and looks promising for a

nondivergent estimator.
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3.4 State Feedback Controllers

3.4.1 introduction

This chapter has up to now been concerned with nondivergence of

estimators. As indicated in section 3.2, that Is only b_If the

problem o£ stabilizing a nonlinear system; the other half is

state-feedback. The basic" requirement was that a (linear or

nonlinear) state-feedback gain be found that made the nonlinear

system stable when all the states could be measured. If such a

control could be found, we could then use the estimated states

instead o£ the actual states without giving up closed-loop stability.

In this section, we will discuss the state feedback problem in more

detail. In particular, in sections 3.4.2 and 3.4.3 we discuss an

optimal control problem and the guaranteed properties possessed by

its solution. We then continue the discussion of state feedback

controllers in a dual manner to the estimation material by

considering constant linear gain state feedback and transformation

based feedback, in sections 3.4.4 and 3.4.5, respectively.

0

3.4.2 Optimal Control

In this section we will discuss a particular type of

state-feedback, that derived from the solution to certain nonlinear

optimal control problems.

We first state the nonlinear optimal control problem and its

solution [52,53,54].

-98-



Optimal Control Problem For the nonlinear system

x(t) = f(x(t)) + B u(t); x(O)=xo, (3.113}

Find u(t) such that the cost functional

J(xo.u(')) = _ [m(x(t)) + puT(t)u(t)] dt (3.114)

Is minimized wlth p>O and m(x)20 for all x.

such cost jN:

J*(xo) _ J{xo.u(-)); v ue_.

We denote the minimum

(3.115)

Optiml Control Solution If there exists a v:_n-_R÷. V(x)YO. for all

x_O. V(O)=O satisfying the SamtLton']acobt-Be1_man (HJB) partial

differential equation

1
0 = _ mCx ) + VxTCx)fCx ) 1 VxT(X)BBTVx(X)2p (3.116)

for all xE_ n, wlth V fx_-rov/axl T then the optimal control is
X _ ,e--I. .... .I • - --

u(t) = - g(x(t)). (3.117)

where g{x) Is given by

1 BTVx(X)gCx) = _ (3.118)
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and

Furthermore, if the solution J_(xo) exists and is at least twice

differentiable, then J_(xo) satisfies the HJB equation (3.116) and

the optimal control is given by (3.117) with V(x)=J_(x).

Remark 1 The problem here is that glven an initial condition Xo, we

are to find the control signal that minimizes (3.114). Thus the

problem is formulated such that one is expecting an open-loop optimal

time function. It is therefore notable that the solution can be

expressed in terms of a feedback function u=-g(x), depending only on

the current state, and independent of time.

Remark 2 It is appropriate here to discuss the actual computation

of Y(-), or g(*) for the optimal control problem. This problem is

not nearly as difficult as that of the computation of the optimal

nonlinear filtering equations. The optimal filtering equations

discussed in section 3.3.2 requlre the integration of a PDE tn

read-time. This is hard enough to do on a main-frame computer in a

laboratory off-line; on an on-line computer in an aircraft, for

example, it becomes ridiculous. The HjB equation discussed _ere is a

much easier proposition. Even if we need to use a main-frame

computer to solve (3.116), we only have to solve it once, off-line,

to compute g(x), which can be stored and used in the actual (smaller)

on-line computer. Of course, efficiently storing g(x) is a difficult

problem in itself, but there are possibilities [55].

While solving the HJB equation is quite difficult to solve with

current methods, it is likely that soon there will be better tools

[56,57]. As a comparision, the Ricatti equation was considered
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extremely hard to compute reliably in the early 1960's until the

advent of the Schur vector approach [58]. It is hoped that we can

provide some motivation here to pursue more efficient methods of

calculation and storage of the feedback function g(x).

The motivation that we refer to is in the guaranteed properties

possessed by solutions to the optimal control problem presented

above. We present these in the next section.

3.4.3 Cuaranteed Properties of Optiml Nonlinear Regulators

In this section we present both existing and new results

concerning the properties of optimal regulators.

Theorem3.17

Assume that a solution to (3.116) exists.

operator deflnedby

(Cx)(t) := g(x(t)).

(Guaranteed I/0 Properties of Optimal Regulators)

Let G be the nondynamical

(3.119)

Then the closed-loop system shown in Figure 3-4 has the following

properties:

(a) Return Difference Condition [59]

II[ I+G@B]ulI2, T

llul12,, r
1; VuE_,TER+, u_O, (3.120)
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G

Figure 3-4: The Optimal Control Loop: G_B
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(b) Other Robustness Properties

2; Vu_,vER., u_O. (3.121)

ll [ I+ (G_B) -1 lull2, v

Ilull2, v

1
_; VuC_,vER., u_O, (3. 122)

(c) Robustness Margins

The closed-loop system has -6dB to +mmultivarlable gain margin and

-60 to +60 degrees o£ multivarlable phase margin at the plant input.

(d) Closed-loop Stability

and

B[I+G¢B]-IlI2 _ 1. (3. 123)

IIGCB[ I+GCB]-IlI2 2. (3.124)

l.e. the closed-loop system (mapping w_q_(x)) is L2-stable.

(e)

If

then

"L2-domaln inequality"

=  TcTc . (3.125)

1 IiCCBul12..r ;11[I+GCB]u112.T I 11u11].T + ;" VuE_, TEB÷. (3.126)
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(f) Exponential Stability

If there exists an M,_ such that

IVxx(x)l _:M _ vxcmn. (3.127)

re(x) + _=_1VxBBTVx. _ . Ixl2-,Vx£_ n, (3. 128)

then the closed-loop system (3.113) with (3.117) is exponentially

stable and thus for the closed-loop system with u=-g(x)+v, the

mapping v_x is L -stable for l_p_®.
P

Proof (a) [59] In a similar manner to theorem 3.7

dV{x{t)) T

= Yx'[f(x)+Bu ] (3.129)dt

and

_[_u + m(x)]dt

-_o { [u+g(x)]Tp[u÷g(x)] - 2Vx T£(x)- 2VTBux } dt

-- _o { [u+g(x)]Tp[u+g(x)] - 2_? } dt

= _o { [u+gCx)]Tp[u+g(x)] } dt - [V(x(v))-V(x(O))]. (3.130)

-104-



Now recall that since we always use a zero initial condition in the

definition Of the operator _, x(O)=O, and thus V(x(O))=O. We have

UuU2 .r <_ II[I+C_B]ull2,.r. (3. 131)

(b): From (3.131), letting v=[I+C_B]u, we have

Thus

Ii[I_:C_B]-lvu2, T _ Ilvl12, T. (3.132)

UC_B[I+C_B]-IulI2,.r = II {I - [I+C4B] -1} u U2. r ._ 2 Ilul12, T (3.133)

and letting w = C_B[I+C_B]-Iu, we have

<_ 2 II(I+(G_B)-I}wu.llwU2, "r (3.134)

(c): The robustness properties are obtained from the return

difference condition (a) with the robustness tests in theorem 2.8.

(d): These are immediate from (b) and the definition o£ norm.

(e): From (3.130), as in (a), V(x(T))20, Y(x(O))=O, and

_o m(x(t)) dt = IIC_BulI_, T

imply (3.126) after dividing by p>O.

(f): The conditions (3.127-3.128) guarantee that V(x) is a Lyapunov
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function for the closed-loop system satisying the requirements of

theorem 2.2and thus x--O is an exponentially stable equilibrium point

of the closed-loop system. We can now conclude L -stability by
P

theorem 2.3. E

These theorems give us the guaranteed properties that are

possessed by the optimal control solution. They are expressed in

terms of the loop operator C@B. The proof o£ result (a) was taken

from [59]. The result (c) was also found by [60_ for a more general

nonlinear system in a Lyapunov sense only. The gain margins o£ (c)

were also found for the Lyapunov case by [61,62_. Note that here we

have more than Just gain and phase margins, we have a "ball" o£

robustness, defined by (a) and (b) and by the robustness tests of

section 2.5. and in addition, we have I/0 stability, not Lyapunov

stability.

Result (e), the "L 2 domain inequality" is the nonlinear

extension o£ the l_lman frequency domain inequality [2,721 £or linea__

systems. This inequality (3.126) may be the start of loop shaping

ideas, as it relates properties o£ the solution to the HJB equation

(G_B) to properties of the parmneters o£ the problem statement

(C_B,p).

In addition to the results of theorem 3.17, we would like to

have incremental versions, i.e., prove that the closed-loop system is

incrementally stable. Unfortunately, these results are not available

at this time. It seems that it will require some sort of one-to-one

mapping condition on the nonlinearity £. Note that for the

-106-



one-dimensional case (n=l), the HJ'B can be solved explicitly, and the

solution is incrementally stable if and only if vf does not change

sign over the real line. This incremental stability issue is related

to the results of appendix C concerning the costate observer.

The property (f) is stated in a global manner, but if the

conditions (3.127-3.128) hold only in some ball (if V is smooth then

the condition (3.127) holds in any bounded region) then we will get a

snwall-signal form of 1/6 stability, as stated in theorem 2.3. This

will be the case for systems containing saturations, as we know that

the system can never be stable when signals can be arbitrary in size

and injected into any component of x.

Now consider the optimal cost J_(x)=V(x) as a function o£ the

control weight, p. Kwakernaak and Sivan [631 discuss the limiting

behavior of V(x) as _0 for the linear case, where V(x)=(I/2)xTKx and

K is the solution to the appropriate Ricatti equation for the Linear-

Quadratic-Resulator (LQR) problem. Since the I{JB equation is the

generalization of the Ricattl equation for nonlinear systems, we

might suspect that there would be some similar asymptotic behavior

here as well. There is:

Theorem3.18 (Cheap Control) Let

1 xTcTcxm(x) = (3.135)

and consider the value of the optimal cost J_(x)=VP(x) as we vary the

control weight, p, down to zero. Then the following facts hold:
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(a) The following limit always exists

llm VP(x) = vO(x).

p_O
(3. 136)

(b) If

llm VP(x) = O,
_0

(3.137)

then there exists a unitary matrix Wp(X). depending on both x and p

(xlWp(x)(i.e. W = I Yx.p) such that

ltm _ Wp(X)gp(X) - Cx; Y xC_ n.
p-lO.

(3. 138)

Proof (a): Flx xC_ n. Then VP(x) Is non-lncreaslng with

decreasing p by inspection of (3.114). If we were to use the same

feedback g(-) for a smaller value of p. we would get a smaller cost

because the trajectories would be the same and p is the control

weight. Since VP(x) Is the optimal (minimum) cost starting from x.

P_ < P2 vP_(x) _ vP2(x); Vx¢_n. (3.139)

Since VP(x) _ 0 Yx, the limit must exist.

(b): Letting V_(x)_ 0 In the HJB equation (3.116). we have

llm { BT x BT x - lim leP(x)12= xTcTcx
p-,o V_p p-,O

(3.140)
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where _ Is defined in the obvious way. Since this implies that

leP(x) l = Icxl; Yx,p, (3.141)

there must exlst a unltary matrix Wp(X) depending on x and p so that

ltm _ Wp(X)gp(X) = Cx: Vx. (3. 142)
p-,O

Remark I We would like to have vO(x)--O imply (3.137) but need some

uniformity condition for the convergence. It seems likely to occur

in practice, as we would not expect VP(x) to become too "oscillatory"

in x as p-_O.

Remark 2 In the linear case [63], the above results are related to

the minimum phaseness of the original open-loop system, namely, If

CCB Is minimum phase, then vP_o as p_Oand (3.137) holds. We discuss

this issue further in section 4.5

3.4.4 Constant Linear State Feedback

In this section we present results on the stability of a state

feedback controller with a constant linear gain. The results are

completely dual to those of section 3.3.5.
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Theorem 3.19 (Linear-Quadratic-State-Feedback [6]) Let the linear

gain matrix G be defined by

C = R-1BTK (3.143)

where K=KT_o is the solution to the. Rlcatti equation

0 = K(X+aI) + (A+aI)TK + Q - KBR-1BTK (3.144)

with a)O, Q=QT_o, and R=RT)o. Then if uniformly

1
K[al + (A - v£(x)) + _ [ Q + KBR-1BTK J ) 0 (3.145)

for all xF_ n. then the feedback

u(t) = - c x(t) (3.146),

stabilizes the nonlinear system

x(t) = £(x(t)) + B u(t) + w(t) (3.147)

w_x, i.e. there exists k such that for the closed-loop system

• t -Ilxll T _' k Ilwll r, VwE_t TEIR+ (3.148)
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Proof See [6]. ][

Note that we also could have a robustness margin result akin to

theorem 3.15.'which we will not bother to state here as the analogy

should be quite clear. Thus it appears that under some conditions.

including systems that are not too nonlinear, we can design a state

feedback controller quite simply.

3.4.5 Transformation BanedState Feedback

Continuing the analogy with the treatment of observers, we now

discuss a state feedback that is analogous to that discussed in

section 3.3.6.

Definition [51] A nonlinear system of the form

X(t) = A x(t) + B a(x(t)) + B u(t) (3.149)

is said to be in confronter form.

We can stabilize a system of this type quite easily, because we can

cancel the nonlinear term a(x) through the control u.

Theorem 3.20 The state feedback

u(t) = - c x(t) - a(x(t)) (3.150)

will stabilize the system in controller form
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xCt) = A xCt ) + B aCxCt)) + B uCt ) + B wCt) (3.151)

(i.e. (3.148) holds), it A-BG is stable.

Proo£ The closed loop trajectory is

_:(t) = [ A- BG ] xCt) + B wCt). II (3.152)

Remark" Note that many mechanical systems, such as robots, are

already in controller form, where all the nonlinearities are in the

acceleration equation. Even t£ our system is not originally in

controller form, there may exist a state transformation that takes

the system into controller form. Just as in the observer case, there

exist conditions that make it possible to check whether it is

possible to trans£orm a given system into controller £orm. In

[21,22.23] conditions are given under which a combination o£ state

transformation and nonlinear state feedback will ltnearize a system.

just the state transformation part is what we need to get to

controller £ornP--the state feedback part corresponds to the function

a(') above.

In this chapter we have covere_ both state estimation, and state

£eedhack. We can now put them together to produce a stable

closed-loop system, as indicated by the separation results of section

3.2. However, we have no way o£ telling, a priori, what the good

properties o£ the closed-loop system will be, i£ any. The next
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chapter will explain how to get these a priori guarantees in a

systematic manner, in which we try to exploit the good properties

possessed by either the estimator loop or the state feedback loop

discussed in this chapter."
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C_4. THE _ NKrHODOLOCY

4.1 Introduction
.

So far. we have covered both the arL_lysis of feedback systems in

chapter 2 and the synthesis of stabilizing compensators in chapter 3.

In this chapter we attempt to bring the analysis results to bear on

the guaranteed properties we uncovered in the last chapter. We now

take as our goal the design of a dynamic nonlinear compensator that

will meet given specifications for the closed-loop system.

The structure of this chapter is as follows. We start off in

section 4.2 by presenting the technical theorems of Loop Operator

Recovery (LOR) for the three variations that we will discuss:

(1) recovery at the plant input. (2) recovery at the plant output.

and (3) formal loop shaping. In addition we present a result on

Q-parnmeterizatlon [2_] that will be useful. After presenting the

basic theorems, we will be ready to detail the entire design process

using the NM_/LOR methodolo_, in section 4.3. Section 4.4 gives

some design hints, involving scaling and dynamic augmentation, while

........=_+_4.5 gives an informal dlscussIuil of "minimum pnase.....systems.

Finally. section 4.6 critiques the entire NMBC/LOR procedure and

compares it to some other possibilities.
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4.2 The LoopOperator Recovery Theorems

The Loop Operator Recovery (LOR) theorems that will be presented

here are direct extenslons of the Loop Transfer Recovery procedure o£

LQG/LTR [1,2] in the linear case. The driving force behind the LOR

idea thus comes directly from [I], although the methods o£ proof here

are of necessity different than their counterparts in the linear

case. A study of the methods of proof used here might be instructive

for readers interested in linear systems as the proofs here are

different from the original ones. even when specialized to the linear

case.

For the followir_, we assume that we have a plant

x(t) = £(x) + B u(t) + B w(t) (4.1a)

y(t) = C x(t) + d(t). (4.1b)

and the nonlinear model-based-compensator

zCt) = £(z(t))- HCz(t) - BgCzCt)) + H[yCt)-rCt)] (4.2a)

uCt) = - gCzCt)), C4.2b)

or, in operator notation

or

where

y = C@B(u+w) + d

u = - C[@-1+ HC + BG]-IH (y-r).

y = P(u+w) + d

u = K (r-y) = K e,
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P :=C_B

K := - G[_-I+ HC + BG]-IH (-I),

and where we define the nonlinear (nondynamical) operator G:

:= z(x(t)). (4.9)

See figure 4-I for a block diagram o£ the closed-loop system. Note

A

that we have not used x as the state of the compensator. This Is

because we are using a reference command, and thus the state of the

compensator is no longer the state estimate. However, this does not

bother us, as we are interested in closed-loop performance, etc., not

state estimation.

We now present a basic operator fact before presenting the

LOR theorems.

Fact For @,G nonlinear and B linear,

[_-I+BG]-IB = _B[I+G_B] -1. (4.10)

Proof The proof of this fact is quite easy, but it wlll be

instructive to do it by inspection of the block diagram. Consider

figure 4-2. We have

x = ¢B[w-Gx]

¢-Ix = Bw - BGx

x = [¢-I+BG]-IBw.

(4.11)

(4.12)

(4.13)

-116-



K u _.

W d

) Ylh._
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Figure 4-2: Demonstration of Operator Equality
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Similarly,

p -- w - GcPB p

p = [I+G_B] -1 w

x = @B p = @B[I+G_B]-1--* W,

(4.14)

(4.15)

(4.16)

and thus we have established the fact. R

Consider figure 4-3, where we depict the NMBC structure in the

closed-loop system. We now present two theorems dealing with the

asymptotic behavior o£ the loop operators for figure 4-3.

Theorem 4.1
(LOR at the Plant Input) Let H, the filter gain in

the compensator, b_ a _..=_r operator, parameterized by _ such that

lim H v_ = BW. (4.17)
_-_0

where W is any invertible operator. Then if B is linear

and

z -_ x as _-_), if d.r=O, (4. ISa)

lira (-K)(-P) = GCB. (4.18b)

For this theorem, we do not require that C be linear.
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Proof- Define the nonlinear operator

Then

X :- m'_-1 + BO] -1.

K = - G[X -1 + HC]-IH(-I)

(4.19)

(4.20)

and by (4.10) and the linearity of H,

X = - GXI-I[I+CXH]-1(-I)

= - GXI-IV_[IV_ + CXHV_]-I(-I). (4.21)

.Now let _-K), and we get

K _ - GXBW[CXBW]-I(-I) = - GXB[CXB]-I(-I)

_ G[*-I+Bo]-IB-{ C[¢-1+B0]-1B }-1(-I)

= - CCB[I+GCB]_I { CCB[I+G@B]_I }-1(_i)

= - GCB(CCB}-I(-I). (4.22)

where we used (4.10) again. Thus

(-K)(-P) _ GCB(CCB}-I{ccB} = GCB, (4,23)

where the convergence is pointwise in the signal space and time, i.e.

OOB}ollo
_0 p, T

(4.24)
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for each fixed U_t.TCR°.

$or G=I.

(4.18a) is shown by repeating the above

Remark The convergence is only polntwise, not uni£orm. Thus it is

only a formal result if we do not have any guarantee of closed-loop

stability. Note also that the result holds independent of the gain

G. That is, G can be nonlinear, time-varylng, or even a dynamical

system itself.

Theorem 4.2

p>O.

Then

(LOR at the plant output) Let G
P

Let assumptions (a-e) be

(a) lim _ G = WIC ; W_ Invertlble.

(b) llm G V_p = W2C : W2 Invertlble,

(c) B linear,

(d) C linear,

(d) [_-I+BGp]-I linear V p>O,

(e) Gp[x_-x2] _ Gpx_-Cpx2

(i) (a) and (c) imply that

llm Cz = O, I£ w=O.

p_O P

(a-e) imply

lim PK = C_H.

p-_O

(ii)

if C(x,-x2) _ O.

be parameterized by

(4.25)

(4.26)
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Proof First we show conclusion (I). Since we wlll consider we wlll

be considering the loop PK. we are implicitly assuming w=O.

and

Xp = @B(--GZp) = @B(--GXp+GXp--GZp)

= - + B(Gx -GZp)¢-lxp BGXp P

Xp = [_-l+BG]B[GXp-GZp] = _B[I+G_B]-l[Gxp-GZp]

CXp = C_B[I'_" + V_GCB] -1 ['_/"pGxp-Vrp'Gzp].

(4.27)

(4.2s)

(4.29)

(4.30)

Now. let: p-,O. and

-.>
CXp C(Xp-Zp). (4.31)

Therefore. Cz must go to zero.
P

Consider implication (ii).

Lemme G[¢-I+BG] -1 _ (CtB)-Ic_ as p-_. (4.32)

Proof of L emma

G[¢-I+BG] -1

We have

= G[¢-I+BG]-I[¢- I+BG_BG]¢

= G{I - [¢-I+BG]-IBG}¢.

(4.33)

(4.34)

by llnearlty of [¢-I+BG]-I. Now, consider
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C{I - [_-I+Bo]BG}4_--I (C- OI_B[I+O@B]-IG}#

- (C - CSB[IV_ + 4-PGc)B]-IV_C}$

-_ (C - C}_ = O, as p-_O. (4.3s)

Thus we can use condition (e) to conclude

G(-I)[_-I+BG] -1 .e- {G - G[_-I+Bo]-IBG}_

= - {G - G_B[I+G_B]-IG}4 _

= - (I - C_BEI+C_B]-I}G_

=- [I+G B]-IC 

-_- (C_B)-Ic_, as p-_O. II (lemma) (4.36)

We now put these results together:

PKe - C_B(-G[_-I+HC+t_]-IH(TI)}e = C_B(-G(-I)[_-I+BG][ - HCz + He]

.._C_B{-G(-I) [_-I+Bo]-IHe

-* C_B(-I)(-I)(C_B)-Ic_I-I = C_H. m (4.37)

Remark This theorem appears somew.hat limited in scope because of

the conditions (d) and (e). These imply that our system is of the

form

xCt) = A xCt) + BaCCx(t)) + B uCt), (4.38)

which is both in controller and observer form (see sections 3.3.6 and

3.4.5). If our system is not in this form, we may get convergence

only over some limited set of signals.
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We now come to the Formal Loop Shaping (FLS) theorem.

Let the system Tdes:V_W be given by

_(t) = f_(s(t))

w = Vs(t}.

+ H vCt) (4.39a)

(4.39b)

Let _ be the @ operator for the system (4.39a), i.e.

:= [S-I+FI] -1, (4.40)

where S is the integral operator and (F1x)(t)=fi(x(t)). Then

r_1,u (4 41 )
"des

We will be considering the block diagram shown in figure 4-4 for our

control system under FLS. The equations are

u = [I+C CB]-IG _H[I+D_H]-I[e+C_Bu]
X S

and thus

= }-1.K { [I+D#H][Gs$H]-I[I+G_B ] - C_B

(4.42)

(4.43)

Comparing figures 4-3 and 4-4, we can see that if everything was

llnear, and C_H=D_H, the NMBC/LOR and FLS compensators would be

equivalent. That is, FLS for the linear case is standard LQG/LTR if

-125-



>.

__J

I

k.___

(

F--l

[mJ

q

X..

@

u

0
o

0

!

@

-126-



• /

/f

÷

!
I

I
I

I

I

I

{

:/

, / /

"1

I
/

I

I

I

I

I

l

/

\
I \

\

//
/i

//

/
/
f

/

/

j'

I

@

bO

-126-



we let CCH=I>PH. Since we are dealing with nonlinear systems here, we

expect that figure 4-3 and 4-4 have different properties, even if

C_H=DqH. They do.

Theorem4.3 (Formal Loop Shaping) Consider the control system

block diagram shown In fIEure 4-4, where K is given by (4.43). Then

if there is an Invertlble operator W such that

then

(a) lim V_G = WC, and (4.44)
p._) x

(b) lim V_G = WD, (4.45)
s

lim PK = D_H. (4.46)

p-_

Proof

-1K = (C_B) -I { [I+DqH][Gs_H]-I[I+GCBJ(C_B)-I - I , (4.47)

so that

: }-IPK { [I+D*H][_PGs_H]-I[_/pI+_/PGxCB](C_.B) -1 - I

-_ }-1[(DqH)-I+I](C"CB)(CCB) 1 - I

= D_H. (4.4s)
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We. have now presented the technical theorems for the recOvery

procedure. We now present a result from Q-paramecerlzatlon [28],

which will allow us to guarantee chat FLS produces a closed-loop

stable system.

Theorem 4.4 (Q-Parameterlzation) Consider the closed-loop system o£

figure 4-5. I£ Q is stable and P is incrementally stable, then the

system will be closed-loop stable.

Proof We have

and

Ilull
T = IIQ [r + P u - d - P(u+w)][l v

II(_ll* r liv. II _., IIAII __ n/lll'l"i" " tlWll.....
..... " ..... T "'"T A T

<: ksll(r,d,w)ll T,

Ilyll T = lid + PCu+w)llr _ Ildllr

<_ kzll(r,d,w)ll v. II

+ IIPII- llwll
I"

+ IIPIl-Ilull
T,

(4.49)

(4.50)

In the next section we will discuss the use o£ these technlcal

results, together with the results of the previous chapters, in

designing feedback control systems.
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Figure 4-5: Q-Parameterizatlon Structure
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4.3 The Nl_C/l_Methodology

4.3.1 Introduction

In this section we will assemble all of our results together to

indicate the step-by-step procedure for designing a multivariable

feedback control system. We have three variations. The first one,

recovery at the plant input, is discussed in section 4°3.2. This is

the most general procedure of the three, in that it does not require

the special conditions that we saw in theorem 4.2, nor does require a

stable plant. The second procedure, recovery at the plant output, is

potentially more useful in that it allows the command following and

output disturbance properties to be manipulated, although it does

have the restrictions of theorem 4.2. This procedure is described in

section 4.3.3. Finally, the formal loop shapin_ procedure, discussed

in section 4.3.4, allows the command following and output disturbance

rejection loop (the loop broken at the plant output) to be shaped

arbitrarily, but has the restriction of requiring an open-loop

incrementally stable plant to guarantee global closed-loop stability.

4.3.2 Recovery at the Plant Input

We now give the steps for designing a controller based on the

recovery at the plant input method, using theorem 4.1.

Step I (Modeling): Develop a Model for the plant to be controlled

as a nonlinear differential equation, or equivalently, in the form

P---C_B, discussed in section 2.2. This is our design plant model, and

can'include augmented dynamics (which.will-be discussed in section
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4.4). As part of the modeling process we must develop bounds on our

modeling error. This is most easily done (for now) in the frequency

domain.

Step 2 (Specifications): Convert all available specifications into

specifications on the loop broken at the plant input, or T=(-K)(-P).

Consult figure 4-1. We will call this the destred toop Tdes.

Obviously, if the more easily we can express our specifications in

terms of Tde s, the better off we will be. The specifications that

can be easily translated in terms of Tde s are

(a) Nominal Closed-Loop Stability. Obviously Tde s must be

closed-loop stable. In addition, since it will be realized as

(-K)(-P) for some K, that realization must be internally

closed-loop stable as well.

(b) Input disturbance specifications. If Tde s is large for all

signals in some set. then the response to noises in that set

will be small. Use the results of section 2.4 for calculations.

(c) Robustness to unmodeled dynamics. We develop specifications for

bandwidth, etc. and can express them in terms of Tde s using the

results of section 2.5.

The basic idea of this step is to capture at_ available

specifications. Thus, if a loop Tde s meets these specifications, we

will be satisfied using it.
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Step 3 (Target Loop Design):

loop that will meet all of the specifications of step 2.

variation of NMBC/LOR. we use a loop

In this step wedelovelop a target

In this

Tde s = COB (4.51)

for some nonlinear operator C. It is suggested that this G come from

the solution to an optimal regulator problem, although this is by no

means necessary. However, if we did use optimal regulator theory, as

discussed in section 3.4, we would be guaranteed several good

properties for the target loop, including

(a) Nominal Closed-Loop Stability. The regulator loop is guaranteed

to be closed-loop stable.

(b) Adjustable Performance. By varying the matrix Q and gain p in

the optimal regulator problem, we can adjust the performance of

the target loop Tde s. For example, by making p smaller, we

increase the performance and bandwidth. In the linear case.

bandwidth control Is many times sufficient to develop a

reasonable "first pass" controller.

(c) Guaranteed Robustness. As shown in theorem 3.17. the loop G_B

has many guaranteed properties, including (1/2,_) gain margin

and +/-60 degrees phase margin. Thus we automatically have

obtained a robust target loop.

Step 4 (NMBC Construction): We now construct the NMBC as shown in

figure 4-3. The gain G comes from step 3. and the gain H must be

chosen such that the closed-loop system is stable. The way to do

this is to use the separation theorem of section 3.2 to realize that
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we should select H to make the estimator contained in the N}{BC

nondivergent. This could be done In any of the ways discussed in

section 3.3, however, the easiest general purpose idea is to use the

extended Kaln_Ln filter. From theorem 3.6, we know that if the system

is detectable, then the EKF will be nondivergent. The CGEKF, while

computationally simpler, may not be nondivergent: we need to check

the conditions given in section 3.3.5. As required for the next step

we will need a set of H's, parameterized by _>0, such that

lim v_H = B#. W invertible. (4.52)
_-_0

g

and H produces a nondivergent estimator for all _>0. These H s can

be generated by the EKF if we select _=qBB T. with q=l/_, and we meet

certain minimum phase conditions (see section 4.5) analogous to the

minimum phase conditions in-time-invariant linear systems.

Step 5 (Loop Operator Recovery): In this step, we apply theorem 4.1

and let _ get small. We have that

lim (-K)(-P) = G_B = Tde s.
_0

(4.53)

I£ we select _ sufficiently small, then our actual loop. (-K)(-P),

will approach the target loop. Tde s. that we selected for its good

Characteristics. Furthermore. we know that the system will be
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closed-loop stable (including internallystable) for all values of

_0o Thus. for our selected value of _. we have designed a

compensator K that stabilizes the plant P and meets all of the

specifications.

Step 6 (System Simulation): In order to be sure that all

specifications were in fact included in step 2 and that nothing was

neglected, many simulations of the closed-loop system must be

performed. This will involve more actual simulations than in the

linear case, because it will be harder to "excercise" all the

different modes and operating regimes. If the design proves

unsatisfactory in any manner, we must go back to step 2 or step 3 to

modify the target loop G_B by modlfyln_ G. Rec_11_ _u _© _ic the

dimension of (-K)(-P), it is easier to simulateand check the

specifications on C_B in step 3. rather than waiting until step 6.

In section 5.3, we present a numerical example demonstrating

this recovery procedure using a simple nonlinear pendulum model.

End of Design Procedure

We have outlined the design procedure for loop operator recovery

at the plant input, which is used when specifications can most easily

be posed on the loop (-K)(-P).

4.3.3 Recovery at the Plant Output

We now give the steps for designing a controller based on the

recovery at the plant output method, using theorem 4.2. We will
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parallel the previous section as much as possible and will leave out

material that would be repetitive. The recovery at the plant output

method is to be used if the plant model is in both controller and

observer form so that theorem 4.2 applies, and if the specifications

are most naturally posed on the loop broken at the plant output, PK.

Step 1 (Modeling): Develop a model for the plant to be controlled

P--C@B, as well as bounds on our modeling error, in the following

special form:

x(t) = A x(t)

y(t) = C x(t).

+ BaCCxCt)) + B uCt)

Note that this model is in both controller and observer form. If our

model is not orginally in this form, we must try to find a state

transformation to bring it into this form. If the model does not fit

this £orm, we can still attempt this procedure, but we will not be

guaranteed the recovery step.

Step 2 (Specifications): Convert all available specifications into

specifications on the loop broken at the plant output, or T=PK.

Consult figure 4-1. We will call this the destred loop Tde s

Obviously, the more easily we can express our specifications in terms

of Tde s. the better off we will be. The specifications that can be

easily translated in terms of Tde s are
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(a) Nominal Closed-Loop Stability. Obviously Tde s must be

closed-loop stable. In addition, since it will be realized as

PK for some K, that realization must be internally closed-loop

stable as well.

(b) Output disturbance specifications. I£ Tde s is large for all

signals in some set, then the response to output disturbances in

that set will be small. Use the results o£ section 2.4 for

calculations.

(c) Command following specifications. Similarly, by the results o£

section 2.4, i£ Tde s is large for all signals in some set, then

the error to commands in that set will be small.

(d) Robustness to unmodeled dynamics. We develop specifications for

bandwidth, etc. and can exnres_ thpm 4n t_=ms ^r T" " ................... des using the

results o£ section 2.5.

The basic idea o£ this steR is to capture art available

specifications. Thus, i£ a loop Tde s meets these specifications, we

will be satisfied using it.

Step 3 (Target Loop Design): In this step we delovelop a target

loop that will meet all o£ the specifications o£ step 2. In this

variation of NMBC/LOR, we use a loop

Tde s = C_H (4.55)

for some operator H. This gain H can come from many sources, as

detailed in section 3.3. We want to make sure that our final

closed-loop system will be stable, so we require that H produce a

nondivergent estimator in the context o£ figure d-3. One possibility
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that we know will be nondivergent if the system is detectable is the

extended Kalman filter. Then we will have the following properties

for the desired loop Tdes = C_H:

(a) Nominal Closed-Loop Stability. The filter loop is guaranteed to

be closed-loop stable (corollary 3.6)

(b) Adjustable Performance. By varying the matrix H in the EKF

formulation, we can adjust the performance of the target loop

Tde s. For example, by making _ larger, we increase the

performance and bandwidth. In the linear case, bandwidth

control is many times sufficient to develop a reasonable "first

pass" controller.

(c) Guaranteed Robustness. As shown in theorem 3.8. the loop C_H

has many guaranteed properties, including good gain and phase

margins, if we select _ large enough so that H(t) does not vary

much from trajectory to trajectory. Thus we can automatically

obtain a fairly robust target loop.

Step 4 (NHBC Construction): We now construct the NHBC as shown in

figure 4-3. The gain H comes from step '3, and the gain G must be

chosen such that the closed-loop system is stable. The way to do

this is to use the separation theorem of section 3.2 to realize that

we should select G to be a stabilizing state feedback gain. This

could be done in any of the ways discussed in section 3.4, however,

because we will require that G have a special form to enable us to do

loop recovery, we propose the folowing technique. We select our

state feedback gain C as:
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GCx) _inx + a(_)
P

(4.56)

where GLin is a matrix defined by
P

GLin = _ BTK.
P P

(4.57)

where K is the symmetric seml-posltlve definite solution to the

Ricattl equation:

0 = ATK + KA + Q - 1KBTBK.
P

(4.58)

.......... _ _.._ .ay, it is clear that G stabilizes our ant

(see section 3.4.5), and also has the asymptotic behavior

lim V_G = WC. W Invertlble. (4.59)

if the linear plant CA,B.C) is minimum phase.

Step 5 (Loop Operator Recovery): In this step, we apply theorem 4.2

and let p approach zero. We have that

llm PK = C_H = Tde s, (4.60)
p-_O

if H is a fixed time varying matrix HCt), a constant matrix H, or a
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nonlinear operator H. However, in the EKF case, the trajectory of

H(t) depends on the internal state of the compensator, as _(t)

depends on the current compensator state z through vf(z(t)). Thus.

the recovery process (4.60) cannot work, as the recovered loop C_H

does not have the same internal structure as each actual loop PK.

Thus, while we do get a convergence to a limiting operator in the

case of the EKF, this limiting operator, in general, is not C_H.

However, we can still use the recovery process if we realize that we

had to have H(t) relatively constant over different trajectories of

the system in order that our guaranteed properties (theorem 3.10)

held. Here, if H(t) is relatively constant, then we can conclude

that (4.60) holds and we can get approximate robustness recovery,

with nondivergence guaranteed because we are using the EKF. As

indicated In section 3.3.4, we can Eet this constancy property of

H(t) by choosing _=qBB T wlth q large. Of course. If we use the

CGEKF, or other constant gain observer, we do not have thls problem.

as H is constant.

If we now assume that we do get recovery, we then can select p

sufficiently small so that our actual loop. PK, will approach the

target loop, Tde s, that we selected for its good characteristics.

Furthermore, we know that the system will be closed-loop stable

(including internally stable) for all values of p>O. Thus, for our

selected value of p, we have designed a compensator K that stabilizes

the plant P and meets all of the specifications.
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Step 6 (System Simulation): Just as in the previous section, we

must do many simulations to be sure that we have overlooked some

important specification and to check the overall system performance.

Again, if the system does not prove satisfactory, we must go back to

steps 2 and 3.

In section 5.4, we demonstate this recovery at the plant output

procedure on a simple nonlinear pendulum model.

End o£ DeslgnProcedure

4.3.4 Formal LoopS haping

We now give the steps for designing a controller based on the

Formal Loop Shaping method [2], using theorem 4.3. This method is

most applicable if the specifications can most easily be poes _n

terms of the loop broken at the plant output, as in the previous

method, and if the plant Is open-loop incrementally stable.

Step 1 (Modeling): Develop a model for the plant to be controlled,

P--C_B, and bounds on the modeling error. The plant should be

incrementally stable.

Step 2 (Specifications): Convert all available specifications into

specifications on the loop broken at the plant output, or T=PK.

Consult figure 4-1. We will call this the desired toop Tdes.

Obviously, if the more easily we can express our specifications in

terms o£ Tde s, the better off we will be. The specifications that

can be easily translated in terms o£ Tde s are discussed in the
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previous section, step 2. Again, here idea is to capture a_

available specifications, so that if a loop Tde s meets these

specifications we will be satisfied using it.

Step 3 (Target Loop Design): In this step we delovelop a target

loop that will meet all of the specifications of step 2. In this

variation of NMBC/LOR, we can use essentially any loop we wish. We

select a system of the form (4.39)

Tde s = D_H, (4.61)

where @H[I+I_H] -1 must be stable. Since we are not constrained as in

the previous two procedure descriptions, we can place any dynamics we

wish in _. One possible choice would be a linear loop, designed with

either a Linear-Quadratic-Regulator loop, or a Kalmn filter loop.

Then we would have

(a) Nominal Closed-Loop Stability. The regulator, and Kalman filter

loops are guaranteed to be closed-loop stable, and thus so Is

_H[I+D_H] -1 .

(b) Adjustable Performance. We can easily adjust the parameters in

the formulation of these optlmalzatlon problems to make the

target loop Tde s look like just about anything.

(c) Guaranteed Robustness. The LQ and KF loops have many guaranteed

properties [6], including (112,w) gain margin and +I-60 degrees

phase margin. Thus we automatically have obtained a robust

target loop.
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Step 4 (NI_C Construction): We now construct the NMBC shown in

figure 4-4, using the parameters that we have determined in the

previous step. Note that we will require that the closed-loop system

be stable. To insure this, we use the result of Q-parameterization

from theorem 4.4, which says that our system will be closed-loop

stable if

(a) [ I+Gx_B] -I stable,

(b) Gs_H[ I+D_H]-I stable, and

(c) P is incrementally stable.

This can be seen by comparing figures 4-4 and 4-5. and applylng

theorem 4.4. In addition, to do the LOR step, we will need to find

G and C such that
s,p x,p

and

]_mV_C = wc (4.62)
X,p

p-_O

lira _ G = WD. (4.63)
s,pp.-)O

One way that this can be done is to formulate an optimal control

problem as follows. For the system

B--[,(x(t))]+[of_(x(t)) ] u(t) (4.64)

find u(t) to minimize the cost functional
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JCxo,so.u(')) = ½_o [ [CxCt)+DsCt)[2+ P u'TCt)uCt) ] dt. (4.65)

The solution will be expressable in the form

u = - gxCX) - gsCX) = - CxX - CsS. (4.66)

By theorem 3.17, we can conclude that condition Ca ) above holds, and

using theorem 3.18 we can conclude (4.62) and (4.63) hold if certain

conditions analogous to the minimum phase conditions of linear

systems can be verified (see section 4.5).

Remark By using the trick of section 4.3.3. where we pick

u=_G Lin x-a(x) for our plant in controller form and make the state
P

feedback system linear, and by choosing I_H linear, we can make the

minimization problem (4.64-4.65) a Linear-Quadratic-Regulator

problem, which is easily solved.

Step 5 (Loop Operator Recovery): In this step, we apply theorem 4.I

and let p approach zero. We have that

llm PK = I_H = Tde s. (4.67)
p-_O

If we select p sufficiently small, then our actual loop, PK, will

approach the target loop. Tde s. that we selected for its good

characteristics. Furthermore. we know that the system will be

closed-loop stable (including internally stable) for all values of
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p>O. Thus, for Our selected value of p, we have designed a

compensator K that stabilizes the plant P and meets all of the

specifications.

Step 6 (System Simulation}: In order to be sure that all

specifications were in fact included in step 2 and that nothing was

neglected, we must do complete simulations, as in the previous

procedures.

End of Design Procedure

4.4 Design Hints

This section is an informal presentation o£ various ideas that

tend to be helpful in linear multivariable control design, and thus

will most certainly be useful for nonlinear control design. The

following two sections discuss scaling of states, inputs, and

outputs, and augmentation with additional dynamics.

4.4.1 Scaling

This section will discuss the scaling of system variables to

make the system easier to deal with. One might scale a model of the

plant to be controlled in order that the controller design process

goes more smoothly and encounters fewer numerical difficulties due to

ill-conditioning. One might also scale the states o£ a controller

that had already been designed so that its implementation could be

done with fewer significant digits in fixed-point arithmetic, or
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scale its inputs or outputs to make them compatible with the

interface equipment. Since there are many additional reasons for

scaling variables, we now consider the scaling process.

Consider a system

_(t) = f(x(t))+ _ uCt)

yCt) = c xCt).

(4.68a)

(4.68b)

where the states, inputs, and outputs may have vastly di£ferent

magnitudes. We can choose a new set of scaled variables, us . Xs, and

Ys by choosing the scaling matrices Su, Sx, Sy so that

the new state variables

-1

Ys = Sy y (4.69)

-1
= s x (4.70)XS X

-1
= S u (4.71)US U

each have components with roughly equal magnitudes. For illustration

purposes, we will now scale the variables so that each component has

a maximum magnitude of unity. We simply select

Sy = diag { max{Y1}, max{y2} ..... maX{Ym} } (4.72)

Sx--diag { max{xl}, max{x 2} ..... maX{Xn} } (4.73)

Su = diag { max.{ul}, max{u 2} ..... maX{Um} }, (4.74)
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where by "max" we mean an approximate estimate of an upper bound for

the magnitude of that variable. The transformed system is

• -1 f )) + S -I B S Us(t ) (d.75a)Xs(t) = Sx (SxXs(t x u

-1C S t) (d.V5b)
Ys(t) = Sy x Xs( "

The advantage of using this new tranformed system is that all our

stability, performance, etc. criterion become less conservative, as

we always treated each component of, say x, equally. If one was in

tons and another in ounces, our bounds would become less useful.

Thus scaling all variables allows us to have a common reference point

It is also possible to "scale" variables nonlinearly, i.e. a

nonlinear change of coordinates. One reason to do this is to try to

make the system "nicer" (read linear); the transformation designs

discussed in chapter 3 touch on this subject.

This is really all there is to scaling.

concept, yet in practice it is very difficult.

lies in deciding what the maximum values are.

It is very simple in

The main difficulty

At times this involves

making value judgements about the relative importance of one variable

versus another. It frequently requires several iterations to reach a

reasonable scaled system, but in the end having such a scaled system

makes llfe much easier.
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4.4.2 I}_Ic Augmentation

In this section we shall briefly discuss the process of dynamic

augmentatton, or the addition of certain dynamics to produce

desirable effects in the final closed-loop system. We will present

an example showing the introduction of free integrators to reduce

steady state errors, although other dynamics might be desirable

depending on the circumstances.

Suppose we start with a plant model like (4.68) and we wish to

design a controller to make the closed-loop system have zero

steady-state error to input disturbances, w, when we set r,d=O in

figure 4-1. Suppose further that the system has no free integrators

in it, i.e. f-I exists. Then we add integrators to the output of the

system, and define a new output yp as

:= y. (4.7v)

We now use the following as our design plant model:

(4.78a)

v¢t) = [ 0 ! ] [ x(t) ]. (4.78b_
"P" yp(t) J " "

We now apply the loop recovery at the plant input procedure,

described in section 4.3.2, so that we can shape the loop (-K)(-P) by

first shaping the target loop G_B. One possibility would be to use
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an optimal control formulation to obtain a good function G, which has

inherent robustness properties. From theorem 3.17, the "L 2 domain

inequality", we have

2 ] 1/2
• IIC_BulI2, TIIG_BII2'T II[T+G_B]ulI2'T _ p + (4.79)

P IlulI2,T + p > P IlulI2.T IlulI2,T

where _,B, etc. are the design plant matrices. I£ we pick

m(x)=xTcTcx, we get the integrator action in G_B (since it is in

C_B). We can see this because when C_B is large, G_B is also large

(we can neglect the p terms). Thus we can shape the loop G_B to our

liking and use the LOR procedure to make certain that the actual loop

(-K)(-P) approached the target loop C_B.

In our final NRBC, for constant disturbances we will have y

going to zero. This is because I£ it did not go to zero, then yp

would blow up, which it cannot do, because o£ the guaranteed

stability. This zero steady state error is guaranteed even if we do

not use the LOR procedure. We only require that the closed-loop

system be stable and thus that we incorporate a nondlvergent

estimator into our compensator.

There are many variations possible on this theme. We could add

integrators at the input of the plant to improve low frequency

command following performance, or we could add resonant dynamics at a

particular frequency to improve disturbance rejection at that

frequency, for example 60 cycle hum in certain critical applications.
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We now conclude this section with the thought that since the

NN_BC/LOR methodology is still in its infancy, when examples are

tried, many new tricks may be uncovered. There are still many linear

design tricks which seem likely to have their counterparts in the

nonlinear world. One of the more promising relations seems to be the

"L 2 domain inequality" of theorem 3.17, which may lead the way to

loop shaping ideas, as will be mentioned in section 6.2.3.

4.5 NonmtnimumPhase Systems

This section will discuss the idea of minimum phase and its

relationship to the theory presented in this thesis. Recall that in

the linear case a minimum phase system is one that has all of its

zeros in the left-half plane, or equivalently, has a stable inverse.

We would like to make a similar definition for the nonlinear

situation, except that we run into a problem. Consider the inverse

of a nonlinear system P, formally written p-1. Now, in general p-1

will not be "proper", in that it will do some pure differentiations

on input signals. This causes problems, for consider a signal that

moves up in frequency indefinitely, for example

Wet) = AosinCt_Ct)),

where

= t 2.

If we apply this to p-l, we see that we will have a growing output

p-lw, due to the differentiation. Put another way, to produce w=Pu,

we must have u growing without bound. The result of all this is that

the operator p-1 is unstable by our definition. Note that we have a
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similar problem with linear systems, as p-I is not, say, L_-stable

either (impulses are not in _), but we get around this by just

considering the poles of p-1, or equivalently, the zeros of P. In

the nonlinear case, we do not have the luxury of being able to check

zeros easily (although see [64] and below). Two possible ways to

still retain the idea of stable inverse are:

(a) Only allow signals with no frequency component above

some cutoff frequency when considering the minimum

phaseness of a system.

(b) Consider the stability of XP -1 or p-1X, where X is a

linear system with n poles and no zeros, e.g.

1
X=I*

(vs+l) n

for some fixed T)O.

The reason that we care about minimum phaseness is that in the

linear case, we must have _ minimum phase plant in order tO obtain

the loop transfer recovery. The reason that this is the case is

fairly straightforward. Since the recovery procedure involves the

approximate inversion of the plant and right-half plane zeros cannot

be cancelled in a stable manner, we have a problem. Note that the

reason recovery works for open-loop unstable plants is that the

dynamics of the recovered loop (say G_B) are the same as the plant

(C_B). so that the open-loop poles do not really get cancelled. We

could have recovery for minimum phase plants i£ we selected the

target loop to have the same "zeros" in the right-half plane as the

plant (See [2] for the linear case).
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Although we did not mention the minimum phase assumption in

previous sections of this chapter, it was already built into one of

the key assumptions: the asymptotic behavior of H and Gp. In the

line_r case, the results o£ [63] indicate that we will get the

correct asymptotic behavior of G only if the orginal plant is
P

minimum phase. The limit Vo of theorem 3.18 is zero for minimum

phase plants, and thus

llm G = WC. (4.S2)
p-_O

Therefore, we could make the following tentative definition.

Definition A plant C_B is minimum phase if there exists a set of

state feedback functions, G , parameterized by p, such that (4.82)
P

above holds, and G stabilizes the plant for all p>O.
P

In [64] a alternate definition for minimum phaseness is given

for relative degree one nonlinear systems which seems to be related.

The definition involves transforming the nonlinear system in such a

way that the zero dyncuatcs are exposed. They define the system to be

minimum phase i£ the zero dynamics are stable and show that minimum

phase systems can be stabilized by high gain feedback. Upon

preliminary investigation it appears that this definition is

equivalent, with suitable technical assumptions, to our notion above

of a stable inverse.

We would like to use one of these definitions to show that

recovery works if and only if the plant is minimum phase, but it

appears that this may not be necessary. I£ we take a lesson from
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linear theory, we realize that rlght-half plane zeros put'performance

restrictions on systems, independent of the methodology used to

design the controller E6S_. In the LQG/LTR methodology, it is

recommended that the LTR procedure be tried even when dealing with a

nonminimum phase system. This forces the controller to find the

"best" stable inverse to the plant and substitute the target loop

dynamics. Thus poor recovery (performance) is obtained in certain

frequency ranges, but since we have right-half plane zeros, we have

to settle for reduced performance anyway.

Thus we recommend for the NMBC/LOR methodology that one lets p-_O

in whichever algorithm one is using to generate G (optimal control.
P

tranformatlon methods, etc.}. Simulations will determine whether or

not the recovery has taken place, and for which signals. Note that

for the trRn_fnrm_e4, v., .._^a-_,,v_.minimu_ phase behavior is determined

by the minimum phaseness of a linear system and thus can be easily

checked. Similar remarks hold for the recovery at the plant input

and formal loop shaping procedures.

4.6 Critique

In this section we discuss the NMBC/LOR loop shaping philosophy

relative to other possible schemes on a sound basis. We will attempt

to discuss informally the robustness of different types of designs.

using loop operators, which, as we saw in chapter 2 are the relevant

quantity in unstructured robustness analysls.

This thesis has been concerned with the design of a compensator

K so that the closed-loop system of figure 4-1 has good properties.
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In particular, we were concerned about either the loop broken at the

plant input. (-K)(-P), or the loop broken at the plant output, PK,

and we were able to design either one of them to have good robustness

properties, with some restrlctlons. Thus we were able to design

within the bandwidth constraints that every physical system has.

Let us now consider a different design strategy, which we will

call the heurtsttc method. Suppose that we could design some sort of

feedback that would llnearlze our plant. We might do this for a

plant in controller form by measuring or estimating accurately the

states needed to llnearlze the plant in the framework of section

3.4.5. Then we could apply linear methodologies to the linearized

plant. We show a generalized version of this idea in figure 4-6.

Note that we could consider it a two-step compensation process, where

the first step consists of an inner loop compensator, KI, which makes

P linear, i.e. so that

P[I+K,P] -1 (4.83)

is linear. The second step consists of an outer loop compensator,

K2. using, say, LQG/LTR, so that we have good loops broken at either

the "input", point (1), or the "output", point (ii). We use quotes

here because they are not the same loop breaking points that we

reaLLN care about for robustness, which are either at the plant input

(iii) or the plant output (iv). This is an inherent problem with the
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Figure 4-6: Two-Step Compensation
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two-step compensation process, and wtth any other procedure, where

the loops that can be molded are not the same as the "true" looPs

that we wish to design.

As a more concrete example_ we might design K2 so that we got

excellent command following performance in figure 4-6. This would be

done by shaping the loop broken at point (tt). We might even be

careful not to exceed what we thought were the bandwidth constraints.

But what is the true bandwidth? The actual loop that is important

for robustness is the loop broken at point (iv), which is not easily

related to the design loop (ti). We might have a much faster loop at

(iv) than at (II) and thus all our efforts to design well at {ii) did

not help us at all at point (iv).

Note the the external linearization methods E21,22,23,24,25,26_

are of the above two-step compensation procedure. However, as we

pointed out earlier in this chapter (throughout section 4.3), there

are ways to use their results in the NMBCILOR framework to achieve a

single-loop design that does not suffer from the above drawbacks.

The above is one of the strong points of NMBC/LOR, namely that

it can be used to control the loops at the true plant inputs and

outputs. Specifically, it can be used to make them robustly

closed-loop stable and have the desired performance. However, it

does have some restrictions when we are concerned with shaping the

loop at the plant output. For example, recovery at the plant output

requires that our plant be in both controller and observer form,
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which is very restrictive. The formal loop shaping (FLS) procedure

allows us to arbitrarily shape the loop at the plant output but

guarantees closed-loop stability (for the time being) only for

incrementally stable plants.
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CHAFIER 5. A NUMERICAL SIMULATION

5.1 Introduction

In order to demonstrate some o£ the details of the NMBC/LOR

methodology, we present the results of a very simple numerical

simulation. Using a model of a damped swinging pendulum, we attempt

to illustrate the following:

(a) Convergence of the estimation error as the extended Kalman

filtering noise parameter _ goes to zero. in a demonstration of

theorem 4.1

(b) Recovery at the plant output.

(c) The guaranteed gain margins of the EKF and recovered loops.

(d) A "frequency sweep" technique for analyzing sensitivity

functions.

(e) Use of the "frequency sweep" technique to show the properties of

the EKF and recovered loops.

5.2 Plant Model and Compensator

For the purposes of this simulation, we selected a simple damped

pendulum model:

= f(x) + B u

y=Cx

(5.1a)

(5.1b)
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or

ri[ ][].xl = x2 + 0
Lxzj -sin(xl) - x2 1 u.

y = [I O] [xl]'2

where the variables are

X i = angle of pendulum, in radlans, with zero

chosen as down.

x_ = angular velocity of pendulum, in

radians/second.

u = input torque to pendulum.

We do not restrict the states in this model, so that for example,

x_=3T is pointing straight up, after going around one full

revolution. Note that this makes our model unstable for inputs with

_gnltude greater than unity, as the torque is high enough to cause

the pendulum to keep spinning around, and thus, for x_(t) to be

The llnearization of the model at the origin (x_=O) givesunbounded.

poles at

-- _ + and -- _ -- ,

with a magnitude of 1.0 rad/sec and a damping coefficient of 0.5.

We next consider the compensator that we will use. Note that

our model above (5.1) is in both controller and observer form. Thus

we decided to use a transformation state feedback controller, as

discussed in section 3.4.5. Since we can place the closed-loop poles

arbitrarily (the transformation controller gives linear closed-loop

dynamics), we decided to parameterize them by p>O and place them on a
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Butterworth pattern.

u=-gp(x):

We chose as our state feedback function

gp(X) = sin(xl) + x_ + xl + x2.

We chose this function as it has the following properties:

(a) The closed-loop system with u=-gp(X) is stable for p>0.

(b) Asymptotic convergence :

(5.3)

lim _ gp(X) = x, = CX. (5.4)
p-_0

(c) For each p>0, there exists a k such that
P

Ivgp(x) l _ kp V x¢_ 2. (5.5)

We need the properties Ca) and (c) to be able to use the separation

theorem (theorem 3.1) of section 3.2, while property (b) will be

needed to use the recovery theorem (theorem 4.2) of section 4.3.3.

Turning to the state estimator design, since our plant (5.1) is

in observer form (section 3.3.6}, we could use a transformation based

observer technique (section 3.3.6) to design a nondlvergent observer,

but with no other priori guarantees. Thus, instead we chose to use

an extended Kalman filter, with its guaranteed robustness properties

(section 3.3.4). As presented in section 3.3.3, there is really only

one design parameter for the EKe, nameiy the symmetric posi'"-'-_AV_

semi-definite matrix _. The other parameters are _-o, the intial

condition for the covarlance, and the Intlal time to for the

covariance propagation to begin, i.e. $.(to)=_.o. We simply chose

_o=0, and to=-4 seconds. This was determined by simulation to be

enough time for the covariance equation to reach roughly steady state
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for the llnearlzatlon point x=O. Remember that we do not start the

state equations (5.2) until the EKF has had sufficient time to

intialize itself (section 3.4.3). This does not mean that if the EKF

happens to encounters noise and drifts from the true state that it

will need to be relnitlallzed; its nondlvergence is guaranteed by

theorem 3.6. It is more a matter of not starting at a bad 2o than

having to select the "correct" 2o.

We selected the design parameter _=qBB T. where q>O. We will

think of q as II_ In the recovery theorem 4.1. Note that since = is

not full rank, we cannot guarantee the nondlvergence of the EKF by

theorem 3.6 unless we can check the uniform controllability of

[vf,B]. It was decided to Just go ahead without that theoretical

justification because it was felt that (a) the system was intuitively

controllable through B, and (b) it would be useful to show that the

EKF could be used successfully without a rot of technical

restrictions having to be checked for each case.

Since we have designed a nondivergent estimator and a

stabilizing state feedback function, we can now put them together by

choosing u=-gp(x), and utilizing the NMBC/LOR structure depicted in

figure 4-3.

The following sections are now devoted to the simulation of this

NMBCILOR closed-loop system, in order to demonstrate its various

properties.
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5.3 Convergence of Estte_tton Error

As proved in theorem 4.1 (recovery at the plant input), when r

A A

and d are zero, then x-#x (since z is x when r=0) as _-_3 in any

nondlvergent estimator where the gain H obeys

lim = BW (5.6)
_._) _"

for some invertlble W. Then it becomes clear that the rest of

theorem 4.1 holds, namely, that

lim (-K)(-P)(u+w) = lim (-Cz) =--Gx =-C_B(u+w) (5.7)

where u+w is the input to the plant in the structure o£ £1gure 4-1.

We now demonstrate this convergence. With u,d,r-0, we simulate

the step response in w. Thus the estimator obtains information about

this step only through observation of the output o£ the plant, y.

The simulation is shown in figures 5-1 and 5-2 for various values of

q, where E--qBBT. Figure 5-1 contains the state estimates (since r=0,

x=z) for a 0.80 magnitude step in w, while figure 5-2 shows the

estimates for a 1.20 magnitude step in w. Note that we get

convergence of the state estimates to the actual states as q-_n.

Since the estimator is presumably nondlvergent, we expect that the

error between the actuai states and the estimates should be bounded

in time for each value of q (because the input w is), and we can see

that it Is. This is true even when the response o£ the states is

unbounded, as in figure 5-2. As noted in the previous section, we

expect to see unbounded behavior for step inputs to the plant larger

than unity in magnltude.
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5.4 Recovery at the Plant Output

We now demonstrate the recovery procedure at the plant output.

Our plant and compensator are already set up in a form suitable for

us to use theorem 4.2. i.e.. the plant is in both controller and

observer form. the state feedback linearizes the plant, and we have

the asymptotic behavior (5.4) that we require.

Figures 5-3, 5-4_ 5-5. and 5-6 show the step responses of the

closed-loop system for step magnitudes of 0.10, 1.00, 3.14, and 4.71,

respectively. In each plot. we can see that as p-_). the closed-loop

step responses converge to the closed-loop step response of the C_H

loop, i.e. letting r(t)=AU_l(t ) be the step response, we see

PKp[I+PKp] -I _ COH[I+C_H] -I as p-_). (5.8)

NoLe that the shape of the responses for different input magnitudes

are very close to each other (obviously, in a linear system they

would all be scaled versions of each other), which indicates that we

are using a fairly large gain for C_H. This is good because large

gains ensure the constancy of H(t) which helps in two ways: (1)

recovery is guaranteed (see section 4.3.3, step 5), and (2) the

robustness properties of the EKF loop (C_H) are ensured (section

3.3.4, theorem 3.11).

We now verify one additional property of the recovery at the

plant output theorem 4.2, namely, that we expect

Cz = zl _ 0 as p _ O. (5.9)

We show the compensator state, z, in figure 5-7, for the particular

step response with magnitude 1.00 (corresponding to figure 5-4).

Note that we do have z1_O as p-_.
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5.5. Cain gargin Tests

Wenow check the robustness of our closed-loop system to gain

variations. Theorem 3.11 tells us that if we have a sufficiently

constant H(t), then we will have an infinite upward gain margin. As

discussed in section 5.2, since we selected a fairly high q, we

expect that H(t) is relatively constant. To check this, we perturbed

our plant by scaling the output by the factors of 2.0, 5.0, and 10.0.

the respective step responses are shown in figures 5-8, 5-9, and 5-10

for a step input magnitude of 3.14, corresponding to figure 5-5. We

see in these plots that (1) the target loop C@H[I+C_H] -1 is stable

for all the gains 2, 5. and I0, and (2) the actual loops PKp[I+PK_ P]-I

approach the target loop as p-_), and thus approach the target loop in

their gain margins.

Consider first figure 5-8. Here we have one closed-loop

response that is unstable (or marginally so), the one corresponding

to p=lO -2. The others are all "closer" to the target loop. and have

a higher gain margin. In figure 5-9, with a gain perturbation of x5,

the responses for the cases p=lO -2 and p=lO -4 go unstable, while the

responses for the systems with better recovery remain stable

(although the case p=lO -6 is starting to be oscillatory). Fi'nally.

in figure 5-10, with a gain factor of 10, the case p=lO -6 also goes

unstable. However, the cases p=lO -8 and p=lO -10 are still stable.

This is because, roughly, (thinking of linear systems) they have

recovered sufficiently so that they match the target loop ove_ the
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"frequencies" of interest, namely, up to the crossover of the

perturbed system, which is higher than the original crossover, due to
i

the action of the gain perturbation.

Thus we have shown that

(a) The target loop has a high gain margin, and

(b) The actual loops recover this gain margin as p-_O.

5.6 Sensitivity Computation

We now turn to a demonstration of one idea for analyzing the

sensitivity of nonlinear systems. Figure 5-11a shows a swept

sinewave of increaslng frequency, given by

r(t) = 3.14 sin(t_(t))

= (.4)-10 14°

(5.10a)

(5. lOb)

We want to use this signal to evaluate the sensitivity operator for

our system and thus we must

(a) choose a wide enough range to cover all the behavior of our

system, and .

(b) shift frequencies slowly enough that we give the system enough

time to adjust to each new frequency, and

(c) use an exponential function so that the response can be viewed

as having a logarithmic scale in frequency.

The r selected above (5.10) has these features.

In figure 5-11b, we show the sensitivity reponse to this signal

r, i.e. plots of [I+_H]-lr and [I+PKp]-lr for p=lO -1 and p=lO -6.

The first thing we should observe is that recovery still takes place

as we let p-_O.
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The second thing we should note Is the demonstration of one o£

the guaranteed properties of the EKF (theorem 3.11):

II[I+CCH]-lll _ 1 + _ (5.11)

where _ is quite small here, since we used a fairly high gain. This

is seen by the absence of "overshoot" In the sensitivity plot. If we

thlnk of the envelope of the response to r as our sensitivity plot

versus frequency, we see that for all frequencies, the sensitivity

operator has gain roughly less than unity. Note that by the

robustness theorems of section 2.5, we know that this imples that our

loop is robust.

The third, and final thing to note about figure 5-11b is that

-1
for p=10 , we do not achieve a good recovery, and in addition, the

I_ i_ not very robust as the sensitivity operator has a gain of_vvy _

approximately 3 for some frequencies. Note that this peak in the

sensitivity curve Is not at the natural frequency of the pendulum (1

radians/second or a period of 6.28 seconds) but rather higher, at

roughly 2 radians/second. This corresponds to the "crossover"

frequency of the closed-loop system, with the peak occuring because

o£ a too rapid crossover (not enough phase margin).

As another possible use of thls type o£ sweeping sinewave is in

the evaluation of L2-norms. In figure 5-12, we plot versus time, t,
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, ,2]i,2"r"2.t = T Ir(',') d'r
(5.12)

llI[I+CtH]-lrlI2, [ 1 _ ]1/2
V_'o t = T [([ I+C@H]-Ir} (r) 12 dT (5.13)

I1[ I+PKp]-lrll2,V_
I{[I+PKp_-lr}(T) 12 dT]1/2 , (5.14)

£or r given by (5.10). We have normalized by V_" so that the

quantities do not keep growing as the simulation progresses and thus

we can see everything on the same scale. Mote that ct-ll2)llrll2, t

becomes relatively constant because we are essentially plotting the

average magnitude o£ the signal. Again, we see the recovery process,

and in addition we show the inequality for the EKF loop

ll[I+C¢H]-lrll2,t _ llrl12,v. (5.15)

As we let p-O, we see that the actual sensitivity approaches (and

meets) this inequality as well, thus showing the robustness o£ the

. .

recovered loop.

5.7 ConcIuslon

This chapter has attempted to demonstrate using a very simple

example some of the NI_BCILOR techniques, In order to convince the

reader that these convergence £acts really are true, and that the EKF

really has some guaranteed properties. Obviously, they are not the
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exhaustive simulations that would have to be done in an actual

design, but rather, they are meant to simply illustrate some o£ the

ideas expressed in this thesis.

-179-



CHAFrER 6. CONCLUSION

B.I Conclusions

This thesis has proposed a new methodology for the control of

multivariable nonlinear systems, that includes the issues of

(a) closed-loop stability,

(b) peformance, and

(c) stability robustness.

The methodology is an extension of a successful linear theory,

LQG/LTR. Under suitable assumptions, almost all of the relevant

linear theoretical results can been extended to the nonlinear case,

although computationally things are more difficult.

The robustness that the results guarantee is not an

"e-robustness?. with very small margins (e.g. there exists an e>O

such that the gain margin is l+e), but rather a much better kind.

Our goal is to guarantee large robustness margins, which translate

into gain margins from -6dB to +m, and phase margins of 60 degrees,

in a muitivariable sense.

In the global methodology, a main feature is the unification of

both IlO analysis methods and state space synthesis methods. Any

practical methodology must use IlO analysis for robustness tests, as

unstructured unmodeled dynamics are impossible to capture in a finite

order dyn_unlcal model. Operators are relatively easy to analyze (by
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simulation) but extremely hard to synthesize (or calculate

explicitly). On the other hand. state space methods are relatively

good for calculations (the extended Kalman filter,

Hamilton-Jacobi-Bellman equation, etc.). We thus split our theory in

half: we do all analysis operations with IlO techniques, as

discussed in chapter 2. and we do all synthesis operations with state

space formulations, as discussed in chapter 3. These are then

combined together to create what is hopefully a coherent methodology,

as discussed in chapter 4, where the best of each ideology is

utilized.

We now present a few of the less global conclusions that we wish

to make.

It appears that nonlinear systems have much in cnmmon with

linear time-varylng systems, as is evidenced by the results of

section 2.3.4. There it is shown that incremental stability of a

nonlinear system is equivalent to the uniform stability of the

linearized time-varylng systems about all possible nominal

trajectories. In addition, the extended Kalman filter for nonlinear

systems (sections 3.3.3 and 3.3.4) has many guaranteed properties as

a result of the properties of the linear tlme-varying Kalman filter

(theorem 3.7).

One of the guaranteed properties of the extended Kalman filter

is its nondivergence. We show in theorem 3.6 that if a system is

detectable, that is. if any nondivergent estimator can be built for

it. then the extended Kalman filter will also be nondivergent. This

has important ramifications for controller design as well as for
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problems in which nonlinear estimation is the desired end result. It

is importantto note that even in applications where it appears on

the surface that estimation is the desired end result, usually the

estimated information,will be fed back in some way to provide control

action. In that case, a guarantee of nondivergence could be quite

reassuring.

We also show in this thesis how the external linearization

results of other researchers can be used in a nonlinear model-based-

compensator structure in a way that does not forfeit good loop

shaping properties. Transformation methods may be used to generate a

model of the plant in controller form to obtain a state feedback

function (section 3.3.6), which can be used in the recovery procedure

at the plant output (section 4.3.3). These methods could also be

used to generate a model in observer form (section 3.4.5) to obtain a

nondlvergent estimator.

It is hoped that the results from research on other

methodologies will be able to be used with the research presented

here as well. For example, the analysis tests of chapter 2 (sections

2.3, 2.4, and 2.5) are useful for judging any proposed nonlinear

control methodology.

In sections 3.4.2. and 3.4.3 we presented results pertaining to

optimal nonlinear regulators. Even though it is at present quite

difficult to solve the Hamilton-Jacobi-Bellman (HJB) partial

differential equation, we show that its solutions have some very nice
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guaranteed properties, and hope that this presents some motivation

for further research on its computation (see the next section for

some ideas}.

Slightly harder to compute than the HjB equation is the costate

observer partial differential equation, discussed in appendix C. The

solution o£ this equation, has many guaranteed properties, and if

certain extra conditions are satisfied, may prove to be a

nondivergent estimator. It has the advantage of being a spiritual

dual to the HJB equation, even more so than the EKF.

Far harder to compute than the HJB or costate equation is the

optimal nonlinear filter, as discussed in section 3.3.2. This

essentially requires the storage and update of every point in the

_o_o space at .... di_retization interval Current computational

technology is still not good enough to do this for all but the

simplest problems. Perhaps further research/technology will change

this. Computatlonally difficult though it may be to solve, the

solution to the optimal filtering problem enjoys the same robustness

properties of the EKF arid costate observer (see appendix D).

6.2 Future Research Directions

The next three sections are devoted to discussing in some detail

the possibilities for future research and extensions relating to the

results presented throughout this thesis. We do this in sections

roughly paralleling the chapters of the thesis: section 6.2.1 covers

the analysis results, section 6.2.2 covers synthesis results, and

section 6.2.3 covers the integration of the two ideas.
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6.2.1 Aualysis

One of the main difficulties with the analysis results of

chapter 2 is the posing of specifications. As mentioned in section

2.6, we might want to use describing function ideas to pose

specifications in a way that humans can comprehend (i.e. not just a

listing of every possible input paired with each desired output).

A related issue is the actual calculation of tests which require

that a certain condition hold for all signals in some signal space,

such as is required for the robustness tests of section 2.5. We need

some results that say, in effect, that if a system is smooth enough,

we only need to check the condltions over some "dense" set in order

to guarantee that they hold over the whole signal space. This dense

set will need to be much smaller than the usual mathematical

definition of a dense set; we want to be abl_ to calculate these

conditions fairly quickly.

6.2.2 Synthesis

The first thing t_t needs additional work in chapter 3 is the

extended Kalman filter. For example, the conditions requiring

controllability through E1/2 should be looked at closely so that

perhaps conditions can be developed for checking this.

In addition, it would be nice to be able to relax the

restriction on the boundedness of the first and second derivatives of

the function f. Since the EKF is essentially a first order
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approximation, it appears that the iterated extended Kalman filter

[39,46] might prove nondivergent under f's with some polynomial

behavior with degree higher than one.

It seems also likely that the EKF should have some guaranteed

stochastic properties, especially in the area of local optimality.

Since no filter can be better for small noises (and thus small

errors), we should be able to prove some optimal local properties.

Then by the extension trick of theorem 2.4, we might be able to

extend the optimality to a more global property.

Another area that might benefit from the results on the EKF is

that of time-varying systems. Theorem 3.7 shows that the normal

linear time-varying Kalman filter has the same robustness properties

as the steady-state version. Perhaps this would be nf ,,_ _ the

design of estimators for time-varying or gain-scheduled systems.

The Hamilton-Jacobi-Bellman partial differential equation is

certainly a big research area in itself. While there has been some

research on the actual calculation by polynomial approximation

[56,57], other methods may have better potential. One possibility is

a transformation based one. The linear version of the HJB equation

is the algebraic matrix Ricattl equation, and one of the ways of

solving the Ricatti equation involves factoring the Hamiltonian

system into two parts: {1) a part with all the stable modes and the

mirror images of the unstable modes, and (2) a part with all the

unstable modes and the mirror images of the stable modes. This then

allows the actual solution to be computed. It seems that a nonlinear

version of this factorization may be possible, in which the
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Hamiltonlan system (from the Maximum Principle of Pontriagin E52,66])

can be transformed In such a way that the unstable and stable "modes"

are separated, allowing one to compute the optimal cost-to-go.

Another, less exotic, method for calculating the solution to the

HJB equation relies on an iterative real-time procedure. Pick any

algorithm to calculate g(x) for a fixed x. This requires solving the

two-point-boundary-value-problem (TPBVP) and can be done by a

steepest descent algorithm, for example. The important thing to

realize Is that these algorithms can be designed to converge very

quickly for initial trajectory guesses that are close to the optimal

ones. Thus, we can use them In real-time, If our system does not

move too fast. The idea is as follows. Suppose we are at time tl.

We start with an intial guess for the optimal control u_(*) and state

xi(*) trajectories starting from the current state x(tl). We apply

the control u1(ts) to the system. At the next time step, we will

have a slightly different state x(t_+At)=x(t2), also different from

the expected state x_(t1+At)=x1_(t2) due to disturbances. We then use

the old trajectories as starting points in our algorithm to comloute

the new optimal trajectories. Since the tlme steps must be

reasonably small, the old and new trajectories should be close, and

thus we can converge quickly, perhaps in one step, to the new optimal

trajectories u_(-), x_(-)startlng from x(t2). We then use as our new

control u2(t2) and continually repeat the process. This procedure

might prove to be very computatlonally efficient. It also avoids the

problem of storing g(-), i.e. g(x) for each value of x.
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Another area of research involving the HJB equation relates to

the incremental properties of its solution. We would like to develop

conditions on the optimal control problem (i.e. on B, f, and m(-))

that would guarantee that we have an incrementally stabilizing state

feedback. There has been some research on the incremental stability

of optimal control solutions (called the second variation [67,68])

but only as they relate to perturbations about the nominal optimal

regulator trajectory (i.e. zero input case). Perhaps these results

could be extended to the case of arbitrary nominal trajectories.

If conditions could be developed for guaranteeing that the

optimal regulator was incrementally stable, it seems likely that they

would apply to the costate observer as well, due to the similar

mathematical structure of the HJB and costate observer partial

differential equations. As indicated in appendix C, if the costate

observer can be made incrementally stable, it would be a nondivergent

state estimator. This would provide a potentially more attractive

observer than the EKF, due to its lower dimension (order n versus

order n + (n+l)n/2).

6.2.3 Compensator Design

One of the important areas from chapter 4 needing additional

work is the relaxation of some of the restrictions on the recovery

procedures. Recovery at the plant output currently requires a quite

restrictive plant model: the plant model must be in both controller

and observer form (theorem d.2). This requires that all the

nonlinearities be directly controlled by the input, and be functions
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only of the output. One possible avenue of research would be to

remove some of these restrictions on the allowable class of models

for recovery at the plant output.

If these restrictions cannot be lessened, it may be possible to

extend the results for the formal loop shaping (FLS).procedure

(theorem d.3). While the recovery process itself does not require an

incrementally stable plant, in order to guarantee stability for the

closed-!oo p system with FLS, we must currently have a plant model

which is incrementally stable. It would certainly be desirable to

remove this restriction. In the linear case, [2] shows how to do FLS

with unstable plants. This indicates that there may be some

possibility that the FLS compensator could stabilize an unstable

plant.

Another important area for research involves the idea of minimum

phase behavior. It would be helpful to have a rigorous definition

for minimum phase systems that would capture the idea of

non-lnvertibility. Perhaps the literature on invertibility of
.- _

dynamical systems would be of use [69,70]. With this type of result,

one could quantify the conditions under which the HJB equation gives

the asymptotic behavior needed for recovery, namely that the optimal

cost and its derivatives goes to zero as the control weighting goes

to zero. In addition, perhaps the results of [65] could be extended

to give limits on possible performance for nonlinear systems with

nonminimum phase behavior.
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A totally different approach to linear control systems design

than that of LQG/LTR is the factortzatton approach [71]. which treats

systems as ratios of stable polynomials. In appendix E. we discuss

how these factorization ideas might be extended to the nonlinear

case. We show there how the ideas of state feedback and state

estimation are related to factorization. Perhaps these ideas can be

extended and made more precise.

Another idea that could use development is that of loop shaping.

We tried to give a sample of this in section 4.4.2. where we used the

L2-inequality to give some rough handle on the optimal regulators

loop operator, in a manner reminiscent of the properties of the

Kalman frequency domain inequality [2,72]. Perhaps other asymptotic

results could be derived for the optimal regulators loop operator.

For example, a useful formula would be an approximation to the loop

operator "at high frequencies", i.e. for those signals where G_B is

small. This would allow a designer to control the aprroximate

crossover behavior of the closed-loop system, as is done in the

LQG/LTR methodology.

Along the lines o£ loop shaping, we remark that in the linear

theory there has been a lot of research on H_ control design methods.

where the H_-norm of weighted sensitivity functions is minimized.

In [2] it is shown that LQG/LTR can be interpreted in terms o£ an H2

minimization of weighted sensitivities. We now show here how we

might interpret a minimization of the system closed-loop gain as a

minimization of weighted sensitivities, as was done for the linear
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case [2]. Let

= f(x) + Bu + Bw (6.1a)

y = Cx + _d (6.1b)

z = Mx. (6.1c)

where M may be a nonlinear function of x, and the variable z is __n

auxiliary variable chosen as the important variable that will be

weighted in the optimization problem. The function H is analogous to

the state weighting function of the optimal regulator theory, m(x),

i.e.

ImCxCt))l = IzCt)12 = I (t)l 2. (6.2)

Let K be a given compensator, and let QK:CW.d)_Cz,u) as depicted in

the closed-loop arrangement o£ figure 6-1. Suppose that we can solve

the following minimization problem:

L -Minimization
P

Find K to minimize

IIQK(w,d) lip,T
IIQKIIp := sup II(w. d) II

w,d p.v
T>0

(6.31

We now pose a different minimization problem, which we will show

is related to Lp-minimization.
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Weighted L -Sensitivity Minimization Find K to minimize:
P

lljSwll2 + ilTwll2 1/2
sup llQK(W'O) llp.v sup [ p.v p.v ]

(6. 4)w ll(w.O)ll - w L 2 J
T>0 p. T V>0 ' IlWllp, v

where J is a given weighting operator, and

S = [I+(-K)(-P)] -I (6.5)

is the sensitivity and

T = I - S (6.6)

is the complementary sensitivity.

This problem for p=2 is similar to the Hm problem o£ linear

systems theory. It is quite easily proven that if we let J=M@B and

let _-<), then the solution to the L -minimization problem becomes the
P

solution to the corresponding weighted L -sensitivity minimization
P

problem.

This raises some interesting points:

(a)
Suppose that we could solve the Lp-minimization problem (6.3)

(which may be quite difficult). Then we could solve the

weighted L -sensitivity minimization problem (6.4) using the
p

same algorithm.

(b) How can the Lp-minimization problem be solved? Perhaps it

involves the solution of the general stochastic optimal output

feedback control problem [53]; hopefully it will be much easier.
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(c) To what extent does the NMBC/LOR or FLS compensator presented in

this thesis approximate the solution to either of the above

minimization problems?

(d) How might this type of analysis be of help in extending the H_

design methods to the nonlinear case. or perhaps in helping us

to understand the NMBCILOR methodology more fully?
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APPENDIX A. Proof of Theorem 2.4

Proof (If) The derivative condition on f implies IS]

that given an e>0 there exists a 6m(e } so that

I_1 _ 6mCe)==> IgCx._)l _ _ I_1
whe r e

gCx._) := fCx+_.t) - fCx.t) - vfCx. t)_.

(A.1)

(A.2)

Let _Ct,T) be the state transltlon matrix for the linear time-varying

Since it is L_ stable, there exists an N such thatsystem C2.52).

Es]

l$(t,T)ldT 5 N {A._)

Consider two trajectories o) C2.S0):

x_= Pu

x2 = PCu+w)

for any u,w and let e=x2-xl be the error between them.

use o£ the following intermediate result.

CA.4)

CA._)

We now make
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L_mma A.I [8] For the above situation, we have

(a) For all e>0, Ilell®, v < 6m(e ) implies that

1 k

Ilell®,v < l-eN II_II=,T < l-eN IIwlIoo,T (A.6)

1-eN
(b) If Ilwll=, T _ k 6m' then (A.6) holds.

Proof of Lemma We have

= f(x2,t)-f(xl,t) = Wxf(Xl,t)e + g(xi,e) + w

and so

e(t) = _¢(t,T)[W(T) + g(X1(T),e(T))]dT

_4=

= _(t) + [_ ¢(t,T)g(Xi(T).eCT))dT
JO

(A.7)

(A.S)

Pick e<I/N. If llell®5 8re(e) then

and

J.

le(t) l 5 I_:Ct)l + J'_ _l$(t,_)l'leC_)ld_

< I#(t)l + eN llelloot

Ilell= T < II_'II=,T + eN Ilell®
, IT

(A.9)

(A.IO)

Since we picked e so that eN<l, we have result (a) of the Lemma.

Result (b) follows from (a), since as we pick w small enough, _ is

bounded and thus e is small enough to guarantee the hypothesis o£

(a). _ (Lemma)
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We now £inish the proo£ o£ the theorem by extending the lemma

result to the entire input space, not just small inputs. Let wE_ and

TC_. be arbitrary. Let r:=Uwll v which must be finite. Now pick an

integer n large enough so that

1-sN (A.11)
r < n---_--_ m

Then we have

Ilellm T = IIPu - P(u+w)llm. v

OO,T

because

1 k k Ilwll®n'n'T_N" Ilwll®,v - 1-eN .T'

11® 1-eNII I" = r_ ......_6n m

CA. 12)

CA. 13)

is small enough to allow us to use the Lemma.
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Proof (only if} Select an arbitrary trajectory x_E_ with associated

input u as in (A.8). Select a trajectory pair v,_E_ for (A.3), fix

TE_., and pick e < 1/k. Now let

5m ce)
CA.14)

"r - I1_11_ T

If wE_ is chosen so that e=_ then

and

_v = g(xl,e ) + w

kII_ll_o,T = II -elloo V _ _- IIwlIco,T k II'_v-g(xt e)ll
' COT

(A.15)

+ ek II_lloo"__ k IlVlloo'T T (A.16)

Therefore

k-

II_llm,T _ 1-ek IIvlI°°,T (A.17)

and since T was arbitrary, and e could have been any smaller number,

we have the desired result.
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APPENDIXB. Proof of Theorem 3.6

(c) implies EKFnondlvergent For the llnearized EKF system

let

Then (B.2) implies

'_ = vf(x(t))_ + Bu + H(t)[y-C_], (B.1)

(B.2)

1 12._ [_'I 2 _ v(_.t) <__ [_' (B.3)

and along trajectories of (B.I) with zero input {u,y=O)

dv(_,t)
dt

1
2 _T_-l(t)_(t)_-l(t)_ + _Tx-l(t)_

1 _T_-I2 (t)i(t)_-lct)_ + _TN-I(t)( vf(xCt))_ - H(t)C_ }

1 T_-I )(-_.(t) + ))_.Ct) + -=2-_ >. Ct vfCxCt _(t)vf(x(t)) 2F,(t)cTc_-(t)}_--I(t)_

)=--_. (t) _ + F.(t)cTc_-(t)F--l(t)_

11112<:- _ _ _ I_12 (B.4)
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Also, we have

IOv(_, t) I 1Ox _ Om_[:_-l(t)] l_l .__ l_l. (B.5)

Since (B.3-B.5) hold for all _6_ n, we can apply theorem 2.2 to

conclude that (B.1) is exponentially stable, i.e. there

existconstants A,M>O such that trajectories o£ (B.1) obey

l._(t)l _;_ I_oI e-xt CB.6)

for all initial conditions _CO)=_o, with u,y=O.

Thus, by theorem 2.3, (B.1) is uniformly L2 and L -stable (with fo=O)
A

for all matrices B and all trajectories x. Now, we would like to

apply theorem 2.4 to conclude that the EKF is nondivergent, however,

since the EKF has a slightly different form than theorem 2.4 used,

due to the dependency of H on 2, we must prove it directly here.

Refering to theorem 2.d for guidance will help.

. We start with (B.1) being uniformly I/0 stable, and

e = x- x = fox) - fCx) - HCt)Ce + Bw - HCt)d

= vfCxCt))e + gCx,e) - HCt)Ce - H(t)d + Bw (B.7)

and letting _b be the state transition matrix for (B.I),
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eCt) - _ _(t.T)[ - HCt)d ÷ Bw + gCx.e) ] dT

= _C t) + _ _Ct'T)gCxCT)'eCT))dT" (B.S)

We can now finlshthe proof in the manner o£ theorem 2.d to conclude

Ilell T < k II(w,d)llv; V'TCIR.,.,w,dE_, (B.9)

which is the desired conclusion.

(b} implies {c} We use the following result of Bucy&Joseph [49,

chapter V] for linear time varying systems.

LemmaB.l For the time-varylng linear system [A(-),B(-),C(-)] and

the associated Kalman filter

_(t) = A(t)_(t) + _(t)AT(t) + E - _(t)C(t)Tc(t)_(t), (B.IO)

(a) I£ [A('),C(')] is uniformly observable, then for all

t>to÷a, where a is the interval of observability, and

for all _o

_(t) 5 [w-l(t,t-a) + C(t,t-a)]. (B.11)
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(b) if [A('),_I/23.is uniformly controllable, then for all

t>to+a, where a is the interval of observability, and

for all _o,

[c-l(t,t-a) + W(t,t-a)3 -I _ _(t) (B.12)

Proof see [49]. I

Now, since W and C are uniformly bounded by hypothesis across

all time-varying systems (i.e. for all x) we obtain uniform bounds on

_(t), and thus by (c), the EKF is nondivergent for to<-a.

(a) implies (c) This is the hardest proof of the theorem; it is

also the most significant result. We proceed by a series of lemmas.

Readers not interested in the details can scan the lemmas for a

sketch o£ the proof.

Lemma B.2

achieved by

For all admissable trajectories z(-)E_ that can be

&(t) = f(z(t))+ u(t): z(o)=o. (B.13)

where [f,C3 is M-detectable, there exists a time-varying matrix H_(t)

that makes

_(t) = [vf(x(t)) - H_(t)CJ_(t) + v(t) (B.14)
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Lm-stable, uniformly for all z(,), i.e. there exists k>O such that

II_llm. r _; k Ilvll®, v (B.1,5)

for all v,_ satisfying (B.14) and for all TE_+.

Proof Since the system [f,C] is M-detectable, there must exist a

nondivergent estimator with associated functional H(-,-,*) and

continuity function _(e,r). Since, by definition, this estimator

must be nondlvergent for all B matrices in the plant and the

estimator, with uniform gain k, we can select B=I. The estimator is

given by

x(t) = fCx(t}) + u(t) + H(t, y(s),u(s),O__s<t)[y(t)-Cx(t)];

x(O)=O. (B.16)

For this proof, set d=O. Select an admissable pair u,z satisfying

(B.13) and define

x(t) = f(x(t)) + u(t) + w(t); x(O)=O

y{t) = C x(t),

(B.17a)

(B.17b)

Let

g(x(t).e(t)) := fCxCt)) - fCxCt)) - vfCxCt)) (B.1S)
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A

in a manner similar to (A.2) of appendix A, where e=x-x is the

estimation error. The estimation error obeys

eCt) --FvfC_'eCt))- HCt,yCs),uCs),O_s<t)3CeCt)+ gCxCt),eCt))+ wet)

(B.-19)

Fix TE_. and pick an arbitrary trajectory pair v,_ for the linearized

system

_(t) = [Vf(X(t)) - H(t,y(s),u(s).O_s<t)]_(t) + v(t). (B.20)

We now compute the gain for the linearized system (B.20).

1

and let

Pick

(B.21)

(B.22)

where 6m(e ) is the continuity function for g(-,-) from (A.I).

select w so that

We now

e(t) = 9 _(t). (B.23)

The w we will need is thus determined by comparing (B.19) and (B.20)

and setting

9V(t) = g(x(t),e(t)) + w(t). (B.24)
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Since

we have

I1_11_, T

Ilelloo T _ I1_11oo T < 5re(e) (B.25)

k  ,, v-gCx= IIl110o T < _" Ilwllro,T

+ k ilelloo,k Ilvll®, T _ T'

Therefore

k Ilvll_ T + ke ll_lloo,T. (B.26)

1
11_11_.7 _ 1-ek Ilvll_,T" (B.27)

We now make use o£ the continuity o£ solutions of differential

equations with respect to parameter variations [79, p.29] to obtain

the desired final result. Let

H_(t) := H(t,Cz(s) ,u(s) ,0_s<t). (B. 28)

As we let e-_), we have pointwise in time, w-_), and thus

x _ z (B.29)

y=Cx _ Cz (B.30)

H(t,y(s),u(s),O_s<t) _H_(t) (B.31)

x _ x (B.32)

vfCxCt)) _ Vf(z(t)) (B.33)
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with solutions of (B.20) satisfying (B.27) for all e>O. Therefore,

solutions of the limit equation (B.14) must obey (B.15) for v and for

all TC_.. Since the z(-) we originally picked was arbitrary, we are

done. I (Lemma B.2)

Lemma B.3 The time-varying system (B.14) is uniformly controllable,

with arbitrary interval o£ controllability, _, uniform across all

trajectories z.

Proof Let

AF(t ) = vf(x(t)) - HW(t)C

[AF(t) I _ H

where N exists by the bounds on vf and Hw.

(B.34)

(B.35)

Select a xi=_ n, with

ixi]=l and let x be the trajectory from 0 to xl over a units o£ time:

x(t) = xltla (B.36)

and v(t) must be

x(t) = xl/a = AF(t)x(t ) + v(t) .

v(t) = [I -AF(t)t ] xl/o,

Iv(t)l (l+N)Ix.l

(B.37)

(B.3S)

(B.39)

Now, we also have that

_to+axtTxt = xlTx(to+a) = xiT¢(to+a,T)V(T)dT,

to
(B.40)
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and by the Schwartz inequality

rto+a 1/2

to to
(B.41)

or, using the controllability grammian, C, we have

and thus

1 5 xITC(to,to+O)xl * (I+N)

1
C(to. to+a) _ _-_

(B.42)

(B. 43)

and since N is independent o£ to,a, and z, we conclude that the

system (B.14) is uniformly controllable. _ (lemma B.3)

LemmaB.4 A uniformly controllable time-varying system

_(t) = A(t} _(t} + B(t) u(t} (B.44)

is L=-stable if and only if it is exponentially stable, i.e. there

exist _,M such that

and

l_(t)l _ DIl_ole-h(t-t°);_(to)=_o.v=O.

]$(t,to)l < DIe -_k(t-t°) .

(B.45)

(B.d6)
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where ¢ is the state transition matrix for (B.44). Furthermore, i'£

the output is considered to be y=C_, the system will be

exponentially stable if the additional constraint of uniform

observability is imposed.

Proof See [73]. For related material, see [7d] for the linear

case. and [12] for a treatment o£ the general nonlinear case. R

(lemma B.4)

Lemma B.5 If A(t)-H_(t)C is exponentially stable, the covariance

propagation equation for the linear filter

_(t} = A(t)_(t) + u(t) + H_(t)[y(t)-C_(t)] (B.47)

driven by white noise with intensity =, with unit intensity

observation noise, is bounded as follows.

S(t) = [A(t)-H(t)C]S(t) + S(t)[A(t)-H(t)C] T + = @ H(t)HT(t). (B.48)

implies

and

[s(t)]_ [ So + I_I1 t > to, (B.49)

Is(t)l. _ [ 1 + I_1 _]1 N2; t > to + max(O,Ln lSol)
- 2h

where k,N are the constants of the exponential stability.

(B.50)
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Proof From standard linear theory E50]:

_tS(t) = @(t,to)So_T(t,to) + _(t,T)E_T(t,T) dr,

to

and we have

_i -2)k ( t-T ) dT
IS(t) l _ So N2*e-2x(t-t°) + [_ l.N2. e

0

SoN2-e-2x(t-t°)+ I- I'N2  (l-el -2)`(t-to)]

SoN2 e-2)k(t-to) + I_[.N2 1___ (B.52)2),"

From this we easily obtain the desired bounds. _ (lemma B.5)

LemmaB_6 The Kalman filter for the time-varying system in the last

lemma has a lower covariance than that given by (B.48).

Proof This is trivial as the Kalman Filter has the lowest

covariance at any time t t o v£ oaA# fil_=, L_,,_j.

For a intuitive explanation, we have from (B.48)

SC t )=A C t )S( t )+S( t )A T ( t ) +E+EH _ ( t )-S( t )CT] EH" ( t )-S( t )C T IT-s( t )cTcs ( t ).

(B.53)

The Kalman filter equation is
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7.(t) = A(t)7.(t) + 7_(t)AT(t) + _=- 7_(t)cTc_E(t), (B.S4)

and by comparing them, it is easy to see that

_(t) _ S(t); Vt>to, _(to)=SCto). (B.55)

(lemma B.6)

Lemma B.7 _(t) in the EKF is uniformly bounded from above for

t_to+a, where o depends on the initial condition _(to)=lo. This is

independent of the noises, controls, etc.

Proof From the last lemma, _(t) is bounded by S(t), which is

bounded from above. Since the bounds on S(t) are uniform for all

A

trajectories x, and all u,w, and d, we have the desired result.

(lemma B.7)

LemmaB.8 _(t) in the EKF-is bounded from below for t_to+O if the

system is uniformly controllable.

Proof _rom the lemma B.1, we have

[c-l(to,to +o) + W(to,to+a)] -I 5 _(t); t_to+O. (B.56)

As mentioned previously, W has an upper bound because ACt)=vf(x(t))

is bounded. We shall compute that bound. Let
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or

_(t) =ACt)#Ct); #Cto)=_o

t_Ct) = _o + ACT)_CT)dT.
to

(B.57)

(B.5S)

Using the Bellman-Gronwall Inequality [8], we get

_tle(t)l _ leol exp{ A(T)dT}. Vt_>to
to

where

Therefore

and

W(to,to+o)

< leoI e-M(t-t°)
I

IACt) l = Ivf(xCt))l 5 M.

_)(t.to) _ e-M(t-to)

_to+o= _T(T,to+G)cTc_(T,to+G)dT
to

(B.59)

(B.60)

(B.61)

icl2 fro+. -2M(to+a-T)e dz
to

2_ [ 1 - e-2MU]

1

(B.62)
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Therefore,

Omin[C-l+w] -I =
1 1 1

>- l_
amaxrC-l+w] _ lc-ll ; lwl Ic-ll + 2M

1 2M
= 1 1 _ 2aM + 1 ' (B.63)

+ --
2M

amin[C]

where a is the constant o£ uniform controllability. Thus _(t) is

bounded from below for t_to+O, by (B.61) and (B.62). _ (lemma B.8)

LemmaB.9 We now finally conclude that the EKF is nondivergent.

Proof _(t) is bounded from above and below, and we can use (c) of

the theorem. _ (lemma B.9)

(End o£ Proof of theorem 3.6)
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APPENDIX C. The Costate Observer

In this appendix we will discuss a possibility for nonlinear

estimation which appears to be new. We call it the costate observer.

Because it has not been fully developed, we can only give an overview

of the observer, with some of its guaranteed properties.

We first present the defining equations for the costate observer

for the nonlinear system

x(t) = f(x(t)) ÷ B u(t) (C.1)

y(t) = C x(t). (C.2)

Let s:_n-_R÷, with Sx=[OS/Ox] T and Sxx the matrix of second partials, t

satisfy the partial differential equation:

1 _ 1 SJ(p}=Sx(P)0 = _ pWcWcp -- pWSxx(P}f(p } 5 (c.3)

The state estimate is given by

x(t) = f(_(t)) + B u(t) + H(_)[y(t)-C_(t)] (c.4)

where

H(_) := Sx-1(x)cT. (c.s)

We see that the estimate equation (C.4) is a model-based estimate, as

we would expect, similar to the optimal filter, the EKF, and the
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CGEKF. The equation for the costate observer (C.3) comes from the

HJB equation via a state variable transformation, where we let

Sx(P)=X and Vx(X)=p, i.e. so that Vx(Sx(P))=p Vp. If we then

transform the closed-loop state equations, we see that we need to

make a simple modification to obtain what resembles observer

dynamics. While this is the original motivation for the costate

observer, it seems to stand on its own, with some properties that can

be shown without reference to the HjB equation:

Theorem C.I (Guaranteed Properties of the Costate Observer) Assume

that a solution to (C.3) exists. Let H be the operator defined by

Hy := H(x)y, in a similar manner to the way we handled the EKF

time-varying gain. Then the following hold with respect to the

filter loop, as shown in figure 3-2 with H(t) replaced with H with

CCH:u_y defined by

x = f(x) + H(x)u

-- y=Cx

(C.6a)

(C.6b)

(a) Return Difference Condition

]l[ I+CCH]u [12. V

Ilul12, T

> 1; VuE_, u_O. TEB+. (c.7)
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(b) Other Robustness Properties

lICCH[I+C_H]-lull2, T

Ilul12, T

5 2; Vuf-_, u_6, TCB+. (C.8)

-1
,[I+(CCH) ]u,2.T

Ilul12, T

_- Vu¢_. u_O. TER+. (C.9)
2'

(c) Robustness Margins

The closed-loop system has -6dB to +_ multlvariable gain margin and

-60 to +60 degrees o£ multivariable phase margin at the input to H,

i.e. the loop C_H is robust.

(d) Closed-loop Stability

and

II[I+C@H]-IlI2 _ 1 (C.10)

IIC@H[ I+C¢H]-1 Ii2 2, (C.11)

i.e. the closed-loop system is L2-stable.

(e) L2-domain Inequall ty

II[I+CCH]ulI2.T > llull2.T+ IIH1/2SxCHUlI2, T (C.12)

Proof The proo£ is carried out in a manner analogous to that o£

theorem 3.17. Let V be the £unction such that Vx(Sx(X))=x. Then
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dVCSxCX) )
dt = TSxx[£Cx)+HCx)w] = xTSxx fcx} + TcTw" (C.13)

and

_[ TESx] dt[wTw + Sx

= _[ [wTw+ xTcTcx-2xTSxx(X)f(x)]dt

= _ { [w+cx]T[w+Cx] - 2wTcx - 2TSxx(X)£(x)} dt

= _o { [w+cx]T[w+cx]- 2_ }dr

= f_ [w+cx]TEw+Cx] dt - [V(Sx(X(T)) - V(Sx(X(0)) ]. (C.14)

Since we start at x(0)=0 and V20, we have result (a). The others

£ollow in a manner completely analogous to theorem 3.17.

Remark These results are all completely dual to those o£ the

optimal regulator (theorem 3.17). Thus it seems to be a good choice

for an observer. However, we are missing one crucial property for

the costate observer: incremental stability. From chapter 2 we know

that this is a crucial property for a nondivergent estimator to have.

Consider the observer equation (C.4). We know £rom the above results

that, roughly, this equation is stable £rom (u,y)_x. We simply need
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to upgrade to incremental stability in order to get nondivergence o£

the estimate. At this point no conditions are known that guarantee

this property for the costate observer. It seems likely that this is

linked to the incremental stability o£ solutions to the HJB eqaution,

and that results should flow easily between the two, given their

common form. There have been some results reported [67,68] on the

incremental properties (called second-variation results) of the HJB

equation, but they hold only along trajectories with zero input. We

cannot say much about the incremental stability around other

trajectories.

Thus it seems that the costate observer has many interesting

properties, and seems to hold some potential as an observer which may

be the "true" dual to the Hamilton-Jacobi-Bellman equation of optimal

control theory.
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APPENDIX D. Cuaranteed Properties of the Optimal Filter

Theorem D.I

equations

For the optimal deterministic filter, described by the

1 Tf(x) _ 1 T- VVt = 2 [y-cx]T[y-Cx] - Vx 2 Vx x (D.I)

x(t) = argmin V(x,t) (D.2)

X

where V(x,O)_O, V(O,O)---O, and V is differentiable, let y=Cx and

A

v=y-y. Then the following "return difference condition" holds

llv+yll2,-r )' IIvlI2,T ; VyE_,TE_+. (D.3)

Proof Since V is differentiable0 Vx(X(t)0t)=O , and thus we have

dV(x(t),t)
dt = Vt(x(t),t ) ÷ Vx(X(t).t)x(t ) = Vt(x(t),t))

and

= _-[y-yj [Y-YJ (D.4)

dV(O,t) 1 T
dt = _ y' (D.5)
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since f(0)=0. Thus we have

and

"Y"._.T-- ,v+_.,_.T = vco.T} - vco.9} -- vfo.T) CD.O)

,,_-;,,_..,.-- ,,v,,_..,.- vc_c,-:_.-,-_-vc:co:_.o:_ c_.-,:_

A

and thus by the minimization property of x, we have

. 22 +v¢,co_o_, vco.._--,,v4,,_VCxC T) T) = llvll,T " - .T" (D.8)

and since V20, we have the desired result.

Remark This return difference property is very similar to the

properties possessed by the extended Kalman filter, the costate

observer, and the optimal regulator, as discussed in section 3.3.4,

appendix C, and section 3.4_3, respectively. It Is unclear exactly

what this result implies for robustness margins of the optimal

filter; it seems likely that it possesses-the same margins as the

above mentioned loops.
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APPENDIX E. Factorlzatlon Ideas

In this section, we will discuss some of the factorization ideas

[71] as they might relate to nonlinear systems. The

Q-parameterization [27,28] we discussed under formal loop shaping was

a basic form of factorization. In [27,28] the set of compensators

stabilizing a given incrementally stable plant is parameterized

(by Q). The factorization of [71] is more general and deals with

possibly unstable linear plants. Suppose we have a plant given by

P---C_Band we can find a stabilizing state feedback function G, i.e.

so that

[_-I+BG]-IB = _B[I+G_B] -I.

and

[I+G_B] -I

are stable. Then we can find a rlght-factorization of P into two

stable operators N, D:

(E.I)

(E.2)

P = ND -I.
LL.oJ

They are given by
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N := CCB[I+G_B] -I

D := [I+G@B] -I.

We would llke to show that this is a right-coprime £actorization, but

this may require some additional assumptions. See [71] for the

linear case and [32] for a nonlinear discussion.

We now consider the left-factorization. Suppose we have a

nondivergent model-based filter with gain H for our plant P. In the

standard filtering formulation that we have been using, let u,d=O.

Then

N = [I+C_H]-IccB

D = [I+C@H] -I

(E.6)

(E.7)

are both stable. D is easy; N is stable because

,[I+CCH]-ICCBw,T : ,y- Cx,.r = ,C(x-X),r _ k lcl ,w,. (E.S)

We have

P = D-1N, (E.9)

and thus we have a left factorization (coprime?) for our plant.

Perhaps it will be possible to use these factorizations to completely

parameterize the set of compensators that will stabilize an arbitrary

plant.
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APPENDIX F. State Feedback Servos

In this section we will present a short description o£ the state

feedback servo, in which a state feedback system is turned into a

command following system.

Suppose that we have our plant

x = f(x) + B u. (F.1)

where we have partitioned the state vector so that

x=[Yl
X r

and a stabilizing state feedback function g(x) = Gx. Now, suppose

that we wish to use this feedback function G to create a command

following system. We might try to use an input to our system (F.1)

u = g(x + Dr)

where r is a command reference input and
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The system shown in figure F-1 shows this setup for the case where we

can decompose G so that

Gyy r.g(x) = Gx = + Gr CV.3)

The result that follows does not rely on this decomposition, but it

does make the block diagram easier to compare with the linear case.

Theorem F.1 (State Feedback Servo Stability)

If the function g is Lipschitz in y, i.e.

]g(yi,Xr)-g(yu,Xr) ] _< M lye-y21, (F.4)

then the closed-loop system with u=g(x+Dr) is I/0 stable.

Proof We have

= f(x) - B g(x+Dr) = f(x) - B g(x) + B[g(x)-g(x+Dr)] (F._)

and so

Ilxll v _ IIg(x)-g(x+Dr)ll <_ M Ilrll v. I (F.6)

Note that the Llpshltz condition means that gy is Lipshitz if we

use the decomposition (F.3).
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Figure F-l: State Feedback Servo
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Remark The state feedback servo suffers from the same problems as

its linear counterpart, the LQ servo. Note that we might have very

good robustness and performance at the loop breaking point (i) in

figure F-l, say ifg came from an optimal regulator problem, but that

the actual performance loop, point (ii), might be terrible. This

concept is related to the discussion in section 4.6 where the

two-step compensation methods were shown to have problems in terms of

shaping the loops that are truly important.
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